Table of Contents Table of Contents
Previous Page  97 128 Next Page
Information
Show Menu
Previous Page 97 128 Next Page
Page Background

Borgognone, M., Armas, P., and Calcaterra, N.B. (2010). Cellular nucleic-acid-

binding protein, a transcriptional enhancer of c-Myc, promotes the formation

of parallel G-quadruplexes. Biochem. J.

428

, 491–498.

Calcaterra, N.B., Armas, P., Weiner, A.M., and Borgognone, M. (2010). CNBP:

a multifunctional nucleic acid chaperone involved in cell death and proliferation

control. IUBMB Life

62

, 707–714.

Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D’Souza, L.M.,

Du, Y., Feng, B., Lin, N., Madabusi, L.V., Mu¨ ller, K.M., et al. (2002). The

comparative RNA web (CRW) site: an online database of comparative

sequence and structure information for ribosomal, intron, and other RNAs.

BMC Bioinformatics

3

, 2.

Chen, W., Liang, Y., Deng, W., Shimizu, K., Ashique, A.M., Li, E., and Li, Y.P.

(2003). The zinc-finger protein CNBP is required for forebrain formation in

the mouse. Development

130

, 1367–1379.

Chen, W., Wang, Y., Abe, Y., Cheney, L., Udd, B., and Li, Y.P. (2007).

Haploinsuffciency for Znf9 in Znf9+/- mice is associated with multiorgan ab-

normalities resembling myotonic dystrophy. J. Mol. Biol.

368

, 8–17.

Chen, S., Su, L., Qiu, J., Xiao, N., Lin, J., Tan, J.H., Ou, T.M., Gu, L.Q., Huang,

Z.S., and Li, D. (2013). Mechanistic studies for the role of cellular nucleic-acid-

binding protein (CNBP) in regulation of c-myc transcription. Biochim. Biophys.

Acta

1830

, 4769–4777.

Chu, C., Zhang, Q.C., da Rocha, S.T., Flynn, R.A., Bharadwaj, M., Calabrese,

J.M., Magnuson, T., Heard, E., and Chang, H.Y. (2015). Systematic discovery

of Xist RNA binding proteins. Cell

161

, 404–416.

Deigan, K.E., Li, T.W., Mathews, D.H., and Weeks, K.M. (2009). Accurate

SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA

106

, 97–102.

Ding, Y., Tang, Y., Kwok, C.K., Zhang, Y., Bevilacqua, P.C., and Assmann,

S.M. (2014). In vivo genome-wide profiling of RNA secondary structure reveals

novel regulatory features. Nature

505

, 696–700.

Fatica, A., and Bozzoni, I. (2014). Long non-coding RNAs: new players in cell

differentiation and development. Nat. Rev. Genet.

15

, 7–21.

Flynn, R.A., and Chang, H.Y. (2014). Long noncoding RNAs in cell-fate pro-

gramming and reprogramming. Cell Stem Cell

14

, 752–761.

Geisler, S., and Coller, J. (2013). RNA in unexpected places: long non-coding

RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol.

14

,

699–712.

Goff, L.A., and Rinn, J.L. (2015). Linking RNA biology to lncRNAs. Genome

Res.

25

, 1456–1465.

Grote, P., Wittler, L., Hendrix, D., Koch, F., Wa¨ hrisch, S., Beisaw, A., Macura,

K., Bla¨ ss, G., Kellis, M., Werber, M., and Herrmann, B.G. (2013). The tissue-

specific lncRNA Fendrr is an essential regulator of heart and body wall devel-

opment in the mouse. Dev. Cell

24

, 206–214.

Gutell, R.R., Lee, J.C., and Cannone, J.J. (2002). The accuracy of ribosomal

RNA comparative structure models. Curr. Opin. Struct. Biol.

12

, 301–310.

Han, P., Li, W., Lin, C.-H., Yang, J., Shang, C., Nurnberg, S.T., Jin, K.K., Xu, W.,

Lin, C.-Y., Lin, C.-J., et al. (2014). A long noncoding RNA protects the heart

from pathological hypertrophy. Nature

514

, 102–106.

Hsiao, E.C., Yoshinaga, Y., Nguyen, T.D., Musone, S.L., Kim, J.E., Swinton, P.,

Espineda, I., Manalac, C., deJong, P.J., and Conklin, B.R. (2008). Marking em-

bryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP

BAC reporter. PLoS ONE

3

, e2532.

Hung, T., Wang, Y., Lin, M.F., Koegel, A.K., Kotake, Y., Grant, G.D., Horlings,

H.M., Shah, N., Umbricht, C., Wang, P., et al. (2011). Extensive and coordi-

nated transcription of noncoding RNAs within cell-cycle promoters. Nat.

Genet.

43

, 621–629.

Jeon, Y., and Lee, J.T. (2011). YY1 tethers Xist RNA to the inactive X nucleation

center. Cell

146

, 119–133.

Johnsson, P., Lipovich, L., Grande´ r, D., and Morris, K.V. (2014). Evolutionary

conservation of long non-coding RNAs; sequence, structure, function.

Biochim. Biophys. Acta

1840

, 1063–1071.

Jones, K., Jin, B., Iakova, P., Huichalaf, C., Sarkar, P., Schneider-Gold, C.,

Schoser, B., Meola, G., Shyu, A.B., Timchenko, N., and Timchenko, L.

(2011). RNA Foci, CUGBP1, and ZNF9 are the primary targets of the mutant

CUG and CCUG repeats expanded in myotonic dystrophies type 1 and type

2. Am. J. Pathol.

179

, 2475–2489.

Kattman, S.J., Witty, A.D., Gagliardi, M., Dubois, N.C., Niapour, M., Hotta, A.,

Ellis, J., and Keller, G. (2011). Stage-specific optimization of activin/nodal and

BMP signaling promotes cardiac differentiation of mouse and human pluripo-

tent stem cell lines. Cell Stem Cell

8

, 228–240.

Kikin, O., D’Antonio, L., and Bagga, P.S. (2006). QGRS Mapper: a web-based

server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids

Res.

34

, W676–W682.

Kino, T., Hurt, D.E., Ichijo, T., Nader, N., and Chrousos, G.P. (2010). Noncoding

RNA gas5 is a growth arrest- and starvation-associated repressor of the gluco-

corticoid receptor. Sci. Signal.

3

, ra8.

Klattenhoff, C.A., Scheuermann, J.C., Surface, L.E., Bradley, R.K., Fields, P.A.,

Steinhauser, M.L., Ding, H., Butty, V.L., Torrey, L., Haas, S., et al. (2013).

Braveheart, a long noncoding RNA required for cardiovascular lineage

commitment. Cell

152

, 570–583.

Kretz, M., Siprashvili, Z., Chu, C., Webster, D.E., Zehnder, A., Qu, K., Lee, C.S.,

Flockhart, R.J., Groff, A.F., Chow, J., et al. (2013). Control of somatic tissue dif-

ferentiation by the long non-coding RNA TINCR. Nature

493

, 231–235.

Lai, F., Orom, U.A., Cesaroni, M., Beringer, M., Taatjes, D.J., Blobel, G.A., and

Shiekhattar, R. (2013). Activating RNAs associate with Mediator to enhance

chromatin architecture and transcription. Nature

494

, 497–501.

Lee, J.T., and Bartolomei, M.S. (2013). X-inactivation, imprinting, and long

noncoding RNAs in health and disease. Cell

152

, 1308–1323.

Lee, T.M., Maurer, M.S., Karbassi, I., Braastad, C., Batish, S.D., and Chung,

W.K. (2012). Severe dilated cardiomyopathy in a patient with myotonic dystro-

phy type 2 and homozygous repeat expansion in ZNF9. Congest. Heart Fail.

18

, 183–186.

Lee, S., Kopp, F., Chang, T.C., Sataluri, A., Chen, B., Sivakumar, S., Yu, H., Xie,

Y., and Mendell, J.T. (2016). Noncoding RNA NORAD regulates genomic sta-

bility by sequestering PUMILIO proteins. Cell

164

, 69–80.

Leontis, N.B., Lescoute, A., and Westhof, E. (2006). The building blocks and

motifs of RNA architecture. Curr. Opin. Struct. Biol.

16

, 279–287.

Lindsley, R.C., Gill, J.G., Murphy, T.L., Langer, E.M., Cai, M., Mashayekhi, M.,

Wang, W., Niwa, N., Nerbonne, J.M., Kyba, M., and Murphy, K.M. (2008).

Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-

mesenchymal transition in differentiating ESCs. Cell Stem Cell

3

, 55–68.

Liquori, C.L., Ricker, K., Moseley, M.L., Jacobsen, J.F., Kress, W., Naylor, S.L.,

Day, J.W., and Ranum, L.P. (2001). Myotonic dystrophy type 2 caused by a

CCTG expansion in intron 1 of ZNF9. Science

293

, 864–867.

Lu, Z., Zhang, Q.C., Lee, B., Flynn, R.A., Smith, M.A., Robinson, J.T.,

Davidovich, C., Gooding, A.R., Goodrich, K.J., Mattick, J.S., et al. (2016).

RNA duplex map in living cells reveals higher-order transcriptome structure.

Cell

165

, 1267–1279.

Ma, Q., Zhou, B., and Pu, W.T. (2008). Reassessment of Isl1 and Nkx2-5 car-

diac fate maps using a Gata4-based reporter of Cre activity. Dev. Biol.

323

,

98–104.

Marques Howarth, M., Simpson, D., Ngok, S.P., Nieves, B., Chen, R.,

Siprashvili, Z., Vaka, D., Breese, M.R., Crompton, B.D., Alexe, G., et al.

(2014). Long noncoding RNA EWSAT1-mediated gene repression facilitates

Ewing sarcoma oncogenesis. J. Clin. Invest.

124

, 5275–5290.

Matunis, M.J., Xing, J., and Dreyfuss, G. (1994). The hnRNP F protein: unique

primary structure, nucleic acid-binding properties, and subcellular localiza-

tion. Nucleic Acids Res.

22

, 1059–1067.

Menendez, C., Frees, S., and Bagga, P.S. (2012). QGRS-H Predictor: a web

server for predicting homologous quadruplex forming G-rich sequence motifs

in nucleotide sequences. Nucleic Acids Res.

40

, W96–W103.

Mian, I.S. (1997). Comparative sequence analysis of ribonucleases HII, III, II PH

and D. Nucleic Acids Res.

25

, 3187–3195.

Molecular Cell

64

, 37–50, October 6, 2016

49