Table of Contents Table of Contents
Previous Page  38 128 Next Page
Information
Show Menu
Previous Page 38 128 Next Page
Page Background

on-target activities comparable with wild-type Cas9 [113]. Combinations of these methods

could provide a route to its ultimate use for gene therapy.

As a powerful, yet versatile, gene-editing and regulation tool, CRISPR

[5_TD$DIFF]

/Cas9 technology is

already accelerating both research and therapeutics. We believe that its broad applications

in genomics research and cell biology research will greatly advance our knowledge of both basic

biology and diseases in the years to come.

[6_TD$DIFF]

Acknowledgments

F.W. acknowledges support from the Center of Synthetic Biology and Shanghai Institute of Rheumatology in Renji Hospital

af

fi

liated to Shanghai Jiaotong University School of Medicine, National Natural Science Foundation of China (No.

81502233), the Science and Technology Commission of Shanghai Municipality (No. 134119a8100) and the Young

Scienti

fi

c Research Project of Shanghai Municipal Health Bureau (No. 20134Y176). L.S.Q. acknowledges support from

the NIH Of

fi

ce of the Director (OD), National Institute of Dental & Craniofacial Research (NIDCR), and NIH Director's Early

Independence Award DP5 OD017887.

References

1.

Capecchi, M.R. (1989) Altering the genome by homologous

recombination.

Science

244, 1288

1292

2.

Rudin, N.

et al.

(1989) Genetic and physical analysis of double-

strand break repair and recombination in

Saccharomyces cer-

evisiae

.

Genetics

122, 519

534

3.

Bibikova, M.

et al.

(2001) Stimulation of homologous recombi-

nation through targeted cleavage by chimeric nucleases.

Mol.

Cell Biol.

21, 289

297

4.

Bibikova, M.

et al.

(2002) Targeted chromosomal cleavage and

mutagenesis in

Drosophila

using zinc-

fi

nger nucleases.

Genetics

161, 1169

1175

5.

Urnov, F.D.

et al.

(2005) Highly ef

fi

cient endogenous human gene

correction using designed zinc-

fi

nger nucleases.

Nature

435,

646

651

6.

Christian, M.

et al.

(2010) Targeting DNA double-strand breaks

with TAL effector nucleases.

Genetics

186, 757

761

7.

Gaj, T.

et al.

(2013) ZFN, TALEN, and CRISPR/Cas-based

methods for genome engineering.

Trends Biotechnol.

31,

397

405

8.

Wolfe, S.A.

et al.

(2000) DNA recognition by Cys2His2 zinc

fi

nger

proteins.

Annu. Rev. Biophys. Biomol. Struct.

29, 183

212

9.

Beerli, R.R. and Barbas, C.F., 3rd (2002) Engineering polydactyl

zinc-

fi

nger transcription factors.

Nat. Biotechnol.

20, 135

141

10. Konermann, S.

et al.

(2013) Optical control of mammalian

endogenous transcription and epigenetic states.

Nature

500,

472

476

11. Zhang, F.

et al.

(2011) Ef

fi

cient construction of sequence-speci

fi

c

TAL effectors for modulating mammalian transcription.

Nat. Bio-

technol.

29, 149

153

12. Maeder, M.L.

et al.

(2013) CRISPR RNA-guided activation of

endogenous human genes.

Nat. Methods

10, 977

979

13. Wiedenheft, B.

et al.

(2012) RNA-guided genetic silencing sys-

tems in bacteria and archaea.

Nature

482, 331

338

14. Marraf

fi

ni, L.A. and Sontheimer, E.J. (2010) CRISPR interference:

RNA-directed adaptive immunity in bacteria and archaea.

Nat.

Rev. Genet.

11, 181

190

15. Nakata, A.

et al.

(1982) Cloning of alkaline phosphatase isozyme

gene (iap) of

Escherichia coli

.

Gene

19, 313

319

16. Barrangou, R.

et al.

(2007) CRISPR provides acquired resistance

against viruses in prokaryotes.

Science

315, 1709

1712

17. Brouns, S.J.

et al.

(2008) Small CRISPR RNAs guide antiviral

defense in prokaryotes.

Science

321, 960

964

18. Jinek, M.

et al.

(2012) A programmable dual-RNA-guided DNA

endonuclease in adaptive bacterial immunity.

Science

337,

816

821

19. Deltcheva, E.

et al.

(2011) CRISPR RNA maturation by trans-

encoded small RNA and host factor RNase III.

Nature

471, 602

607

20. Sapranauskas, R.

et al.

(2011) The Streptococcus thermophilus

CRISPR/Cas system provides immunity in

Escherichia coli

.

Nucleic. Acids Res.

39, 9275

9282

21. Marraf

fi

ni, L.A. and Sontheimer, E.J. (2010) Self versus non-self

discrimination during CRISPR RNA-directed immunity.

Nature

463, 568

571

22. Cong, L.

et al.

(2013) Multiplex genome engineering using

CRISPR/Cas systems.

Science

339, 819

823

23. Mali, P.

et al.

(2013) RNA-guided human genome engineering via

Cas9.

Science

339, 823

826

24. Jinek, M.

et al.

(2013) RNA-programmed genome editing in

human cells.

Elife

2, e00471

25. Hwang, W.Y.

et al.

(2013) Ef

fi

cient genome editing in zebra

fi

sh

using a CRISPR-Cas system.

Nat. Biotechnol.

31, 227

229

26. Cho, S.W.

et al.

(2013) Targeted genome engineering in human

cells with the Cas9 RNA-guided endonuclease.

Nat. Biotechnol.

31, 230

232

27. Makarova, K.S.

et al.

(2015) An updated evolutionary classi

fi

ca-

tion of CRISPR-Cas systems.

Nat. Rev. Microbiol.

13, 722

736

28. Chylinski, K.

et al.

(2014) Classi

fi

cation and evolution of type II

CRISPR-Cas systems.

Nucleic. Acids Res.

42, 6091

6105

29. Gasiunas, G.

et al.

(2012) Cas9-crRNA ribonucleoprotein com-

plex mediates speci

fi

c DNA cleavage for adaptive immunity in

bacteria.

Proc. Natl. Acad. Sci. U.S.A.

109, E2579

E2586

30. Ran, F.A.

et al.

(2015) In vivo genome editing using

Staphylo-

coccus aureus

Cas9.

Nature

520, 186

191

31. Zhang, Y.

et al.

(2013) Processing-independent CRISPR RNAs

limit natural transformation in

Neisseria meningitidis

.

Mol. Cell

50,

488

503

32. Mali, P.

et al.

(2013) CAS9 transcriptional activators for target

speci

fi

city screening and paired nickases for cooperative

genome engineering.

Nat. Biotechnol.

31, 833

838

33. Sampson, T.R.

et al.

(2013) A CRISPR/Cas system mediates

bacterial innate immune evasion and virulence.

Nature

497, 254

257

34. Hirano, H.

et al.

(2016) Structure and engineering of

Francisella

novicida

Cas9.

Cell

164, 950

961

35. Hale, C.R.

et al.

(2009) RNA-guided RNA cleavage by a CRISPR

RNA-Cas protein complex.

Cell

139, 945

956

36. Hale, C.R.

et al.

(2012) Essential features and rational design of

CRISPR RNAs that function with the Cas RAMP module complex

to cleave RNAs.

Mol. Cell

45, 292

302

37. Zetsche, B.

et al.

(2015) Cpf1 is a single RNA-guided endonu-

clease of a class 2 CRISPR-Cas system.

Cell

163, 759

771

38. Yamano, T.

et al.

(2016) Crystal structure of Cpf1 in complex with

guide RNA and target DNA.

Cell

165, 949

962

39. Dong, D.

et al.

(2016) The crystal structure of Cpf1 in complex

with CRISPR RNA.

Nature

532, 522

526

886

Trends in Cell Biology, November 2016, Vol. 26, No. 11