

92. Lanctot, C.
et al.
(2007) Dynamic genome architecture in the
nuclear space: regulation of gene expression in three dimen-
sions.
Nat. Rev. Genet.
8, 104
–
115
93. Chen, B.
et al.
(2013) Dynamic imaging of genomic loci in living
human cells by an optimized CRISPR/Cas system.
Cell
155,
1479
–
1491
94. Anton, T.
et al.
(2014) Visualization of speci
fi
c DNA sequences in
living mouse embryonic stem cells with a programmable
fl
uores-
cent CRISPR/Cas system.
Nucleus
5, 163
–
172
95. Ma, H.
et al.
(2015) Multicolor CRISPR labeling of chromosomal
loci in human cells.
Proc. Natl. Acad. Sci. U.S.A.
112, 3002
–
3007
96. Deng, W.
et al.
(2015) CASFISH: CRISPR/Cas9-mediated in situ
labeling of genomic loci in
fi
xed cells.
Proc. Natl. Acad. Sci. U.S.A.
112, 11870
–
11875
97. Ratz, M.
et al.
(2015) CRISPR/Cas9-mediated endogenous pro-
tein tagging for RESOLFT super
–
resolution microscopy of living
human cells.
Sci. Rep.
5, 9592
98. Kamiyama, D.
et al.
(2016) Versatile protein tagging in cells with
split
fl
uorescent protein.
Nat. Commun.
7, 11046
99. Nelles, D.A.
et al.
(2016) Programmable RNA tracking in live cells
with CRISPR/Cas9.
Cell
165, 488
–
496
100. McKenna, A.
et al.
(2016) Whole-organism lineage tracing by
combinatorial and cumulative genome editing.
Science
353,
aaf7907
101. Shipman, S.L.
et al.
(2016) Molecular recordings by directed
CRISPR spacer acquisition.
Science
353, aaf1175
102. Maddalo, D.
et al.
(2014) In vivo engineering of oncogenic chro-
mosomal rearrangements with the CRISPR/Cas9 system.
Nature
516, 423
–
427
103. Choi, P.S. and Meyerson, M. (2014) Targeted genomic rear-
rangements using CRISPR/Cas technology.
Nat. Commun.
5,
3728
104. Hsu, P.D.
et al.
(2013) DNA targeting speci
fi
city of RNA-guided
Cas9 nucleases.
Nat. Biotechnol.
31, 827
–
832
105. Fu, Y.
et al.
(2013) High-frequency off-target mutagenesis
induced by CRISPR-Cas nucleases in human cells.
Nat. Bio-
technol.
31, 822
–
826
106. Crosetto, N.
et al.
(2013) Nucleotide-resolution DNA double-
strand break mapping by next-generation sequencing.
Nat.
Methods
10, 361
–
365
107. Tsai, S.Q.
et al.
(2015) GUIDE-seq enables genome-wide pro
fi
l-
ing of off-target cleavage by CRISPR-Cas nucleases.
Nat. Bio-
technol.
33, 187
–
197
108. Guilinger, J.P.
et al.
(2014) Fusion of catalytically inactive Cas9 to
FokI nuclease improves the speci
fi
city of genome modi
fi
cation.
Nat. Biotechnol.
32, 577
–
582
109. Tsai, S.Q.
et al.
(2014) Dimeric CRISPR RNA-guided FokI nucle-
ases for highly speci
fi
c genome editing.
Nat. Biotechnol.
32,
569
–
576
110. Fu, Y.
et al.
(2014) Improving CRISPR-Cas nuclease speci
fi
city
using truncated guide RNAs.
Nat. Biotechnol.
32, 279
–
284
111. Davis, K.M.
et al.
(2015) Small molecule-triggered Cas9 protein
with improved genome-editing speci
fi
city.
Nat. Chem. Biol.
11,
316
–
318
112. Slaymaker, I.M.
et al.
(2016) Rationally engineered Cas9 nucle-
ases with improved speci
fi
city.
Science
351, 84
–
88
113. Kleinstiver, B.P.
et al.
(2016) High-
fi
delity CRISPR-Cas9 nucle-
ases with no detectable genome-wide off-target effects.
Nature
529, 490
–
495
114. Plevock, K.M.
et al.
(2015) Newly characterized region of CP190
associates with microtubules and mediates proper spindle mor-
phology in
Drosophila
stem cells.
PLoS ONE
10, e0144174
115. Bhattacharjee, A.
et al.
(2016) Activity of Menkes Disease protein
ATP7A is essential for redox balance in mitochondria.
J. Biol.
Chem.
291, 16644
–
16658
116. Popow, J.
et al.
(2015) FASTKD2 is an RNA-binding protein
required for mitochondrial RNA processing and translation.
RNA
21, 1873
–
1884
117. Claussnitzer, M.
et al.
(2015) FTO obesity variant circuitry and
adipocyte browning in humans.
N. Engl. J. Med.
373, 895
–
907
118. Birsoy, K.
et al.
(2015) An essential role of the mitochondrial
electron transport chain in cell proliferation is to enable aspartate
synthesis.
Cell
162, 540
–
551
119. D
’
Osualdo, A.
et al.
(2015) Transcription factor ATF4 induces
NLRP1 in
fl
ammasome expression during endoplasmic reticulum
stress.
PLoS ONE
10, e0130635
120. Plumb, R.
et al.
(2015) A functional link between the co-transla-
tional protein translocation pathway and the UPR.
Elife
4, e07426
121. Schoborg, T.
et al.
(2015) An Asp-CaM complex is required for
centrosome-pole cohesion and centrosome inheritance in neural
stem cells.
J. Cell Biol.
211, 987
–
998
122. Li, J.
et al.
(2015) Glycosylation inhibition reduces cholesterol
accumulation in NPC1 protein-de
fi
cient cells.
Proc. Natl. Acad.
Sci. U.S.A.
112, 14876
–
14881
123. Fuchs, G.
et al.
(2015) Kinetic pathway of 40S ribosomal subunit
recruitment to hepatitis C virus internal ribosome entry site.
Proc.
Natl. Acad. Sci. U.S.A.
112, 319
–
325
124. Virreira Winter, S.
et al.
(2016) Genome-wide CRISPR screen
reveals novel host factors required for Staphylococcus aureus
alpha-hemolysin-mediated toxicity.
Sci. Rep.
6, 24242
888
Trends in Cell Biology, November 2016, Vol. 26, No. 11