Table of Contents Table of Contents
Previous Page  40 128 Next Page
Information
Show Menu
Previous Page 40 128 Next Page
Page Background

92. Lanctot, C.

et al.

(2007) Dynamic genome architecture in the

nuclear space: regulation of gene expression in three dimen-

sions.

Nat. Rev. Genet.

8, 104

115

93. Chen, B.

et al.

(2013) Dynamic imaging of genomic loci in living

human cells by an optimized CRISPR/Cas system.

Cell

155,

1479

1491

94. Anton, T.

et al.

(2014) Visualization of speci

fi

c DNA sequences in

living mouse embryonic stem cells with a programmable

fl

uores-

cent CRISPR/Cas system.

Nucleus

5, 163

172

95. Ma, H.

et al.

(2015) Multicolor CRISPR labeling of chromosomal

loci in human cells.

Proc. Natl. Acad. Sci. U.S.A.

112, 3002

3007

96. Deng, W.

et al.

(2015) CASFISH: CRISPR/Cas9-mediated in situ

labeling of genomic loci in

fi

xed cells.

Proc. Natl. Acad. Sci. U.S.A.

112, 11870

11875

97. Ratz, M.

et al.

(2015) CRISPR/Cas9-mediated endogenous pro-

tein tagging for RESOLFT super

resolution microscopy of living

human cells.

Sci. Rep.

5, 9592

98. Kamiyama, D.

et al.

(2016) Versatile protein tagging in cells with

split

fl

uorescent protein.

Nat. Commun.

7, 11046

99. Nelles, D.A.

et al.

(2016) Programmable RNA tracking in live cells

with CRISPR/Cas9.

Cell

165, 488

496

100. McKenna, A.

et al.

(2016) Whole-organism lineage tracing by

combinatorial and cumulative genome editing.

Science

353,

aaf7907

101. Shipman, S.L.

et al.

(2016) Molecular recordings by directed

CRISPR spacer acquisition.

Science

353, aaf1175

102. Maddalo, D.

et al.

(2014) In vivo engineering of oncogenic chro-

mosomal rearrangements with the CRISPR/Cas9 system.

Nature

516, 423

427

103. Choi, P.S. and Meyerson, M. (2014) Targeted genomic rear-

rangements using CRISPR/Cas technology.

Nat. Commun.

5,

3728

104. Hsu, P.D.

et al.

(2013) DNA targeting speci

fi

city of RNA-guided

Cas9 nucleases.

Nat. Biotechnol.

31, 827

832

105. Fu, Y.

et al.

(2013) High-frequency off-target mutagenesis

induced by CRISPR-Cas nucleases in human cells.

Nat. Bio-

technol.

31, 822

826

106. Crosetto, N.

et al.

(2013) Nucleotide-resolution DNA double-

strand break mapping by next-generation sequencing.

Nat.

Methods

10, 361

365

107. Tsai, S.Q.

et al.

(2015) GUIDE-seq enables genome-wide pro

fi

l-

ing of off-target cleavage by CRISPR-Cas nucleases.

Nat. Bio-

technol.

33, 187

197

108. Guilinger, J.P.

et al.

(2014) Fusion of catalytically inactive Cas9 to

FokI nuclease improves the speci

fi

city of genome modi

fi

cation.

Nat. Biotechnol.

32, 577

582

109. Tsai, S.Q.

et al.

(2014) Dimeric CRISPR RNA-guided FokI nucle-

ases for highly speci

fi

c genome editing.

Nat. Biotechnol.

32,

569

576

110. Fu, Y.

et al.

(2014) Improving CRISPR-Cas nuclease speci

fi

city

using truncated guide RNAs.

Nat. Biotechnol.

32, 279

284

111. Davis, K.M.

et al.

(2015) Small molecule-triggered Cas9 protein

with improved genome-editing speci

fi

city.

Nat. Chem. Biol.

11,

316

318

112. Slaymaker, I.M.

et al.

(2016) Rationally engineered Cas9 nucle-

ases with improved speci

fi

city.

Science

351, 84

88

113. Kleinstiver, B.P.

et al.

(2016) High-

fi

delity CRISPR-Cas9 nucle-

ases with no detectable genome-wide off-target effects.

Nature

529, 490

495

114. Plevock, K.M.

et al.

(2015) Newly characterized region of CP190

associates with microtubules and mediates proper spindle mor-

phology in

Drosophila

stem cells.

PLoS ONE

10, e0144174

115. Bhattacharjee, A.

et al.

(2016) Activity of Menkes Disease protein

ATP7A is essential for redox balance in mitochondria.

J. Biol.

Chem.

291, 16644

16658

116. Popow, J.

et al.

(2015) FASTKD2 is an RNA-binding protein

required for mitochondrial RNA processing and translation.

RNA

21, 1873

1884

117. Claussnitzer, M.

et al.

(2015) FTO obesity variant circuitry and

adipocyte browning in humans.

N. Engl. J. Med.

373, 895

907

118. Birsoy, K.

et al.

(2015) An essential role of the mitochondrial

electron transport chain in cell proliferation is to enable aspartate

synthesis.

Cell

162, 540

551

119. D

Osualdo, A.

et al.

(2015) Transcription factor ATF4 induces

NLRP1 in

fl

ammasome expression during endoplasmic reticulum

stress.

PLoS ONE

10, e0130635

120. Plumb, R.

et al.

(2015) A functional link between the co-transla-

tional protein translocation pathway and the UPR.

Elife

4, e07426

121. Schoborg, T.

et al.

(2015) An Asp-CaM complex is required for

centrosome-pole cohesion and centrosome inheritance in neural

stem cells.

J. Cell Biol.

211, 987

998

122. Li, J.

et al.

(2015) Glycosylation inhibition reduces cholesterol

accumulation in NPC1 protein-de

fi

cient cells.

Proc. Natl. Acad.

Sci. U.S.A.

112, 14876

14881

123. Fuchs, G.

et al.

(2015) Kinetic pathway of 40S ribosomal subunit

recruitment to hepatitis C virus internal ribosome entry site.

Proc.

Natl. Acad. Sci. U.S.A.

112, 319

325

124. Virreira Winter, S.

et al.

(2016) Genome-wide CRISPR screen

reveals novel host factors required for Staphylococcus aureus

alpha-hemolysin-mediated toxicity.

Sci. Rep.

6, 24242

888

Trends in Cell Biology, November 2016, Vol. 26, No. 11