Table of Contents Table of Contents
Previous Page  39 128 Next Page
Information
Show Menu
Previous Page 39 128 Next Page
Page Background

40. Fonfara, I.

et al.

(2016) The CRISPR-associated DNA-cleaving

enzyme Cpf1 also processes precursor CRISPR RNA.

Nature

532, 517

521

41. Abudayyeh, O.O.

et al.

(2016) C2c2 is a single-component

programmable RNA-guided RNA-targeting CRISPR effector.

Science

353, aaf5573

42. Ran, F.A.

et al.

(2013) Double nicking by RNA-guided CRISPR

Cas9 for enhanced genome editing speci

fi

city.

Cell

154, 1380

1389

43. Komor, A.C.

et al.

(2016) Programmable editing of a target base

in genomic DNA without double-stranded DNA cleavage.

Nature

533, 420

424

44. Qi, L.S.

et al.

(2013) Repurposing CRISPR as an RNA-guided

platform for sequence-speci

fi

c control of gene expression.

Cell

152, 1173

1183

45. Peters, J.M.

et al.

(2016) A comprehensive, CRISPR-based

functional analysis of essential genes in bacteria.

Cell

165,

1493

1506

46. Gilbert, L.A.

et al.

(2013) CRISPR-mediated modular RNA-

guided regulation of transcription in eukaryotes.

Cell

154,

442

451

47. Gilbert, L.A.

et al.

(2014) Genome-scale CRISPR-mediated

control

of gene repression and activation.

Cell

159,

647

661

48. Konermann, S.

et al.

(2015) Genome-scale transcriptional acti-

vation by an engineered CRISPR-Cas9 complex.

Nature

517,

583

588

49. Larson, M.H.

et al.

(2013) CRISPR interference (CRISPRi) for

sequence-speci

fi

c control of gene expression.

Nat. Protoc.

8,

2180

2196

50. Zhao, Y.

et al.

(2014) Sequence-speci

fi

c inhibition of microRNA

via CRISPR/CRISPRi system.

Sci. Rep.

4, 3943

51. Perez-Pinera, P.

et al.

(2013) RNA-guided gene activation by

CRISPR-Cas9-based transcription factors.

Nat. Methods

10,

973

976

52. Cheng, A.W.

et al.

(2013) Multiplexed activation of endogenous

genes by CRISPR-on, an RNA-guided transcriptional activator

system.

Cell Res.

23, 1163

1171

53. Tanenbaum, M.E.

et al.

(2014) A protein-tagging system for

signal ampli

fi

cation in gene expression and

fl

uorescence imag-

ing.

Cell

159, 635

646

54. Chavez, A.

et al.

(2015) Highly ef

fi

cient Cas9-mediated transcrip-

tional programming.

Nat. Methods

12, 326

328

55. Chavez, A.

et al.

(2016) Comparison of Cas9 activators in multiple

species.

Nat. Methods

13, 563

567

56. Zalatan, J.G.

et al.

(2015) Engineering complex synthetic tran-

scriptional programs with CRISPR RNA scaffolds.

Cell

160, 339

350

57. Hilton, I.B.

et al.

(2015) Epigenome editing by a CRISPR-Cas9-

based acetyltransferase activates genes from promoters and

enhancers.

Nat. Biotechnol.

33, 510

517

58. Kearns, N.A.

et al.

(2015) Functional annotation of native

enhancers with a Cas9-histone demethylase fusion.

Nat. Meth-

ods

12, 401

403

59. Thakore, P.I.

et al.

(2015) Highly speci

fi

c epigenome editing by

CRISPR-Cas9 repressors for silencing of distal regulatory ele-

ments.

Nat. Methods

12, 1143

1149

60. Vojta, A.

et al.

(2016) Repurposing the CRISPR-Cas9 system

for targeted DNA methylation.

Nucleic. Acids Res.

44, 5615

5628

61. Kearns, N.A.

et al.

(2014) Cas9 effector-mediated regulation of

transcription and differentiation in human pluripotent stem cells.

Development

141, 219

223

62. Shi, J.

et al.

(2015) Discovery of cancer drug targets by CRISPR-

Cas9 screening of protein domains.

Nat. Biotechnol.

33, 661

667

63. Korkmaz, G.

et al.

(2016) Functional genetic screens for

enhancer elements in the human genome using CRISPR-

Cas9.

Nat. Biotechnol.

34, 192

198

64. Shalem, O.

et al.

(2014) Genome-scale CRISPR-Cas9 knockout

screening in human cells.

Science

343, 84

87

65. Bernstein, B.E.

et al.

(2006) A bivalent chromatin structure marks

key developmental genes in embryonic stem cells.

Cell

125, 315

326

66. Zhou, Y.

et al.

(2014) High-throughput screening of a CRISPR/

Cas9 library for functional genomics in human cells.

Nature

509,

487

491

67. Chen, S.

et al.

(2015) Genome-wide CRISPR screen in a mouse

model of tumor growth and metastasis.

Cell

160, 1246

1260

68. Parnas, O.

et al.

(2015) A genome-wide CRISPR screen in

primary immune cells to dissect regulatory networks.

Cell

162,

675

686

69. Wong, A.S.

et al.

(2016) Multiplexed barcoded CRISPR-Cas9

screening enabled by CombiGEM.

Proc. Natl. Acad. Sci. U.S.A.

113, 2544

2549

70. Evers, B.

et al.

(2016) CRISPR knockout screening outperforms

shRNA and CRISPRi in identifying essential genes.

Nat. Biotech-

nol.

34, 631

633

71. Morgens, D.W.

et al.

(2016) Systematic comparison of CRISPR/

Cas9 and RNAi screens for essential genes.

Nat. Biotechnol.

34,

634

636

72. Lane, A.B.

et al.

(2015) Enzymatically generated CRISPR libraries

for genome labeling and screening.

Dev Cell

34, 373

378

73. Friedland, A.E.

et al.

(2013) Heritable genome editing in

C.

elegans

via a CRISPR-Cas9 system.

Nat. Methods

10, 741

743

74. Bassett, A.R.

et al.

(2013) Highly ef

fi

cient targeted mutagenesis

of

Drosophila

with the CRISPR/Cas9 system.

Cell Rep.

4, 220

228

75. Jao, L.E.

et al.

(2013) Ef

fi

cient multiplex biallelic zebra

fi

sh genome

editing using a CRISPR nuclease system.

Proc. Natl. Acad. Sci.

U.S.A.

110, 13904

13909

76. Chang, N.

et al.

(2013) Genome editing with RNA-guided Cas9

nuclease in zebra

fi

sh embryos.

Cell Res.

23, 465

472

77. Li, W.

et al.

(2013) Simultaneous generation and germline trans-

mission of multiple gene mutations in rat using CRISPR-Cas

systems.

Nat. Biotechnol.

31, 684

686

78. Lv, Q.

et al.

(2016) Ef

fi

cient generation of myostatin gene mutated

rabbit by CRISPR/Cas9.

Sci. Rep.

6, 25029

79. Yan, Q.

et al.

(2014) Generation of multi-gene knockout rabbits

using the Cas9/gRNA system.

Cell Regen. (Lond).

3, 12

80. Wang, X.

et al.

(2015) Generation of gene-modi

fi

ed goats target-

ing MSTN and FGF5 via zygote injection of CRISPR/Cas9 sys-

tem.

Sci. Rep.

5, 13878

81. Crispo, M.

et al.

(2015) Ef

fi

cient generation of myostatin knock-

out sheep using CRISPR/Cas9 technology and microinjection

into zygotes.

PLoS ONE

10, e0136690

82. Zou, Q.

et al.

(2015) Generation of gene-target dogs using

CRISPR/Cas9 system.

J. Mol. Cell Biol.

7, 580

583

83. Wang, K.

et al.

(2015) Ef

fi

cient generation of myostatin mutations

in pigs using the CRISPR/Cas9 System.

Sci. Rep.

5, 16623

84. Niu, Y.

et al.

(2014) Generation of gene-modi

fi

ed cynomolgus

monkey via Cas9/RNA-mediated gene targeting in one-cell

embryos.

Cell

156, 836

843

85. Wang, H.

et al.

(2013) One-step generation of mice carrying

mutations in multiple genes by CRISPR/Cas-mediated genome

engineering.

Cell

153, 910

918

86. Yang, H.

et al.

(2013) One-step generation of mice carrying

reporter and conditional alleles by CRISPR/Cas-mediated

genome engineering.

Cell

154, 1370

1379

87. Platt, R.J.

et al.

(2014) CRISPR-Cas9 knockin mice for genome

editing and cancer modeling.

Cell

159, 440

455

88. Chiou, S.H.

et al.

(2015) Pancreatic cancer modeling using

retrograde viral vector delivery and in vivo CRISPR/Cas9-medi-

ated somatic genome editing.

Genes. Dev.

29, 1576

1585

89. Swiech, L.

et al.

(2015) In vivo interrogation of gene function in the

mammalian brain using CRISPR-Cas9.

Nat. Biotechnol.

33, 102

106

90. Sanchez-Rivera, F.J.

et al.

(2014) Rapid modelling of cooperating

genetic events in cancer through somatic genome editing.

Nature

516, 428

431

91. Xue, W.

et al.

(2014) CRISPR-mediated direct mutation of cancer

genes in the mouse liver.

Nature

514, 380

384

Trends in Cell Biology, November 2016, Vol. 26, No. 11

887