

identification of culture conditions for induction and maintenance of naive hu-
man pluripotency. Cell Stem Cell
15
, 471–487.
Theunissen, T.W., Friedli, M., He, Y., Planet, E., O’Neil, R.C., Markoulaki, S.,
Pontis, J., Wang, H., Iouranova, A., Imbeault, M., et al. (2016). Molecular
criteria for defining the naive human pluripotent state. Cell Stem Cell
19
,
502–515.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J.,
Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from
human blastocysts. Science
282
, 1145–1147.
Tsukiyama, T., and Ohinata, Y. (2014). A modified EpiSC culture condition con-
taining a GSK3 inhibitor can support germline-competent pluripotency in mice.
PLoS ONE
9
, e95329.
Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F.,
and Jaenisch, R. (2013). One-step generation of mice carrying mutations in
multiple genes by CRISPR/Cas-mediated genome engineering. Cell
153
,
910–918.
Weinberger, L., Ayyash, M., Novershtern, N., and Hanna, J.H. (2016). Dynamic
stem cell states: naive to primed pluripotency in rodents and humans. Nat.
Rev. Mol. Cell Biol.
17
, 155–169.
Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger,
K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibro-
blasts into a pluripotent ES-cell-like state. Nature
448
, 318–324.
Wu, J., and Izpisua Belmonte, J.C. (2015). Dynamic pluripotent stem cell states
and their applications. Cell Stem Cell
17
, 509–525.
Wu, J., and Izpisua Belmonte, J.C. (2016). Stem cells: a renaissance in human
biology research. Cell
165
, 1572–1585.
Wu, J., Okamura, D., Li, M., Suzuki, K., Luo, C., Ma, L., He, Y., Li, Z., Benner,
C., Tamura, I., et al. (2015). An alternative pluripotent state confers interspecies
chimaeric competency. Nature
521
, 316–321.
Wu, J., Greely, H.T., Jaenisch, R., Nakauchi, H., Rossant, J., and Belmonte,
J.C. (2016). Stem cells and interspecies chimaeras. Nature
540
, 51–59.
Xiang, A.P., Mao, F.F., Li, W.-Q., Park, D., Ma, B.-F., Wang, T., Vallender, T.W.,
Vallender, E.J., Zhang, L., Lee, J., et al. (2008). Extensive contribution of em-
bryonic stem cells to the development of an evolutionarily divergent host.
Hum. Mol. Genet.
17
, 27–37.
Yang, L., Gu¨ ell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Shrock,
E., Xu, W., Poci, J., et al. (2015). Genome-wide inactivation of porcine endog-
enous retroviruses (PERVs). Science
350
, 1101–1104.
Yoshioka, K., Noguchi, M., and Suzuki, C. (2012). Production of piglets from
in vitro-produced embryos following non-surgical transfer. Anim. Reprod.
Sci.
131
, 23–29.
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L.,
Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced
pluripotent stem cell lines derived from human somatic cells. Science
318
,
1917–1920.
Zou, J., Maeder, M.L., Mali, P., Pruett-Miller, S.M., Thibodeau-Beganny, S.,
Chou, B.-K., Chen, G., Ye, Z., Park, I.H., Daley, G.Q., et al. (2009). Gene target-
ing of a disease-related gene in human induced pluripotent stem and embry-
onic stem cells. Cell Stem Cell
5
, 97–110.
486
Cell
168
, 473–486, January 26, 2017