Table of Contents Table of Contents
Previous Page  84 128 Next Page
Information
Show Menu
Previous Page 84 128 Next Page
Page Background

identification of culture conditions for induction and maintenance of naive hu-

man pluripotency. Cell Stem Cell

15

, 471–487.

Theunissen, T.W., Friedli, M., He, Y., Planet, E., O’Neil, R.C., Markoulaki, S.,

Pontis, J., Wang, H., Iouranova, A., Imbeault, M., et al. (2016). Molecular

criteria for defining the naive human pluripotent state. Cell Stem Cell

19

,

502–515.

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J.,

Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from

human blastocysts. Science

282

, 1145–1147.

Tsukiyama, T., and Ohinata, Y. (2014). A modified EpiSC culture condition con-

taining a GSK3 inhibitor can support germline-competent pluripotency in mice.

PLoS ONE

9

, e95329.

Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F.,

and Jaenisch, R. (2013). One-step generation of mice carrying mutations in

multiple genes by CRISPR/Cas-mediated genome engineering. Cell

153

,

910–918.

Weinberger, L., Ayyash, M., Novershtern, N., and Hanna, J.H. (2016). Dynamic

stem cell states: naive to primed pluripotency in rodents and humans. Nat.

Rev. Mol. Cell Biol.

17

, 155–169.

Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger,

K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibro-

blasts into a pluripotent ES-cell-like state. Nature

448

, 318–324.

Wu, J., and Izpisua Belmonte, J.C. (2015). Dynamic pluripotent stem cell states

and their applications. Cell Stem Cell

17

, 509–525.

Wu, J., and Izpisua Belmonte, J.C. (2016). Stem cells: a renaissance in human

biology research. Cell

165

, 1572–1585.

Wu, J., Okamura, D., Li, M., Suzuki, K., Luo, C., Ma, L., He, Y., Li, Z., Benner,

C., Tamura, I., et al. (2015). An alternative pluripotent state confers interspecies

chimaeric competency. Nature

521

, 316–321.

Wu, J., Greely, H.T., Jaenisch, R., Nakauchi, H., Rossant, J., and Belmonte,

J.C. (2016). Stem cells and interspecies chimaeras. Nature

540

, 51–59.

Xiang, A.P., Mao, F.F., Li, W.-Q., Park, D., Ma, B.-F., Wang, T., Vallender, T.W.,

Vallender, E.J., Zhang, L., Lee, J., et al. (2008). Extensive contribution of em-

bryonic stem cells to the development of an evolutionarily divergent host.

Hum. Mol. Genet.

17

, 27–37.

Yang, L., Gu¨ ell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Shrock,

E., Xu, W., Poci, J., et al. (2015). Genome-wide inactivation of porcine endog-

enous retroviruses (PERVs). Science

350

, 1101–1104.

Yoshioka, K., Noguchi, M., and Suzuki, C. (2012). Production of piglets from

in vitro-produced embryos following non-surgical transfer. Anim. Reprod.

Sci.

131

, 23–29.

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L.,

Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced

pluripotent stem cell lines derived from human somatic cells. Science

318

,

1917–1920.

Zou, J., Maeder, M.L., Mali, P., Pruett-Miller, S.M., Thibodeau-Beganny, S.,

Chou, B.-K., Chen, G., Ye, Z., Park, I.H., Daley, G.Q., et al. (2009). Gene target-

ing of a disease-related gene in human induced pluripotent stem and embry-

onic stem cells. Cell Stem Cell

5

, 97–110.

486

Cell

168

, 473–486, January 26, 2017