

necessary experiments; T.Z. and J.Z.X. performed the bioinformatics analysis;
H.Z., M.G., and S.C. analyzed data; and H.Z., S.C., J.G., Q.Q., and T.E. wrote
the manuscript.
CONFLICTS OF INTEREST
The authors have filed a patent entitled, ‘‘AP-1 inhibitors for precision therapy
of diabetic patients.’’
ACKNOWLEDGMENTS
S.C. is funded by The New York Stem Cell Foundation (R-103), American Dia-
betes Association (1-12-JF-06), and Tri-institutional Starr Stem Cell Grant
(2014-030). S.C. is a New York Stem Cell Foundation-Robertson Investigator.
T.Z. is funded by a NYSTEM postdoctoral fellowship. A.S.Y. and L.Y. are sup-
ported by NIH HL078960 (to L.Y.) and AHA grant 16GRNT26430113 (to L.Y.).
J.G. was supported by ‘‘Biomedical Research Program’’ funds at Weill Cornell
Medical College in Qatar, a program funded by Qatar Foundation. Q.Q. is sup-
ported by a Scientist Development Award (K01HL129892) from the NHLBI.
This study was also supported by a Shared Facility contract to T.E. and S.C.
from the New York State Department of Health (NYSTEM C029156). NKX6.1
and NKX2.2 antibodies were provided by University of Iowa Hybridoma
bank. Human islets were provided by The Integrated Islet Distribution Pro-
gram. The plentiCRISPR v2 vector and Puro 2.0 were purchased from Addg-
ene (plasmid no. 52961 and no. 24970). We are also very grateful for technical
support and advice provided by Harold S. Ralph in the Cell Screening Core Fa-
cility and Jason McCormick in the Flow Cytometry Facility at Weill Cornell
Medical College, NY.
Received: December 21, 2015
Revised: April 8, 2016
Accepted: July 1, 2016
Published: August 11, 2016
REFERENCES
Abdelli, S., Abderrahmani, A., Hering, B.J., Beckmann, J.S., and Bonny, C.
(2007). The c-Jun N-terminal kinase JNK participates in cytokine- and isolation
stress-induced rat pancreatic islet apoptosis. Diabetologia
50
, 1660–1669.
Aikawa, Y., Morimoto, K., Yamamoto, T., Chaki, H., Hashiramoto, A., Narita,
H., Hirono, S., and Shiozawa, S. (2008). Treatment of arthritis with a selective
inhibitor of c-Fos/activator protein-1. Nat. Biotechnol.
26
, 817–823.
Asahara, S., Etoh, H., Inoue, H., Teruyama, K., Shibutani, Y., Ihara, Y., Kawada,
Y., Bartolome, A., Hashimoto, N., Matsuda, T., et al. (2015). Paternal allelic
mutation at the Kcnq1 locus reduces pancreatic
b
-cell mass by epigenetic
modification of Cdkn1c. Proc. Natl. Acad. Sci. USA
112
, 8332–8337.
Bitner-Glindzicz, M., Lindley, K.J., Rutland, P., Blaydon, D., Smith, V.V., Milla,
P.J., Hussain, K., Furth-Lavi, J., Cosgrove, K.E., Shepherd, R.M., et al. (2000).
A recessive contiguous gene deletion causing infantile hyperinsulinism, enter-
opathy and deafness identifies the Usher type 1C gene. Nat. Genet.
26
, 56–60.
Boini, K.M., Graf, D., Hennige, A.M., Koka, S., Kempe, D.S., Wang, K.,
Ackermann, T.F., Fo¨ ller, M., Vallon, V., Pfeifer, K., et al. (2009). Enhanced insu-
lin sensitivity of gene-targeted mice lacking functional KCNQ1. Am. J. Physiol.
Regul. Integr. Comp. Physiol.
296
, R1695–R1701.
Brambillasca, S., Altkrueger, A., Colombo, S.F., Friederich, A., Eickelmann, P.,
Mark, M., Borgese, N., and Solimena, M. (2012). CDK5 regulatory subunit-
associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endo-
plasmic reticulum (ER) of insulinoma cells. J. Biol. Chem.
287
, 41808–41819.
Gloyn, A.L., Weedon, M.N., Owen, K.R., Turner, M.J., Knight, B.A., Hitman, G.,
Walker, M., Levy, J.C., Sampson, M., Halford, S., et al. (2003). Large-scale
association studies of variants in genes encoding the pancreatic beta-cell
KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that
the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes
52
,
568–572.
Gloyn, A.L., Pearson, E.R., Antcliff, J.F., Proks, P., Bruining, G.J., Slingerland,
A.S., Howard, N., Srinivasan, S., Silva, J.M., Molnes, J., et al. (2004). Activating
mutations in the gene encoding the ATP-sensitive potassium-channel subunit
Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med.
350
, 1838–1849.
Hivert, M.F., Vassy, J.L., and Meigs, J.B. (2014). Susceptibility to type 2 dia-
betes mellitus–from genes to prevention. Nat. Rev. Endocrinol.
10
, 198–205.
Hua, H., Shang, L., Martinez, H., Freeby, M., Gallagher, M.P., Ludwig, T.,
Deng, L., Greenberg, E., Leduc, C., Chung, W.K., et al. (2013). iPSC-derived
b
cells model diabetes due to glucokinase deficiency. J. Clin. Invest.
123
,
3146–3153.
Hughes, J.H., Watson, M.A., Easom, R.A., Turk, J., and McDaniel, M.L. (1990).
Interleukin-1 induces rapid and transient expression of the c-fos proto-onco-
gene in isolated pancreatic islets and in purified beta-cells. FEBS Lett.
266
,
33–36.
Massa, O., Iafusco, D., D’Amato, E., Gloyn, A.L., Hattersley, A.T., Pasquino, B.,
Tonini, G., Dammacco, F., Zanette, G., Meschi, F., et al.; Early Onset Diabetes
Study Group of the Italian Society of Pediatric Endocrinology and Diabetology
(2005). KCNJ11 activating mutations in Italian patients with permanent
neonatal diabetes. Hum. Mutat.
25
, 22–27.
Micallef, S.J., Li, X., Schiesser, J.V., Hirst, C.E., Yu, Q.C., Lim, S.M., Nostro,
M.C., Elliott, D.A., Sarangi, F., Harrison, L.C., et al. (2012). INS(GFP/w) human
embryonic stem cells facilitate isolation of in vitro derived insulin-producing
cells. Diabetologia
55
, 694–706.
Nielsen, E.M., Hansen, L., Carstensen, B., Echwald, S.M., Drivsholm, T.,
Glu¨ mer, C., Thorsteinsson, B., Borch-Johnsen, K., Hansen, T., and
Pedersen, O. (2003). The E23K variant of Kir6.2 associates with impaired
post-OGTT serum insulin response and increased risk of type 2 diabetes.
Diabetes
52
, 573–577.
Ohara-Imaizumi, M., Yoshida, M., Aoyagi, K., Saito, T., Okamura, T.,
Takenaka, H., Akimoto, Y., Nakamichi, Y., Takanashi-Yanobu, R., Nishiwaki,
C., et al. (2010). Deletion of CDKAL1 affects mitochondrial ATP generation
and first-phase insulin exocytosis. PLoS ONE
5
, e15553.
Okamura, T., Yanobu-Takanashi, R., Takeuchi, F., Isono, M., Akiyama, K.,
Shimizu, Y., Goto, M., Liang, Y.Q., Yamamoto, K., Katsuya, T., et al. (2012).
Deletion of CDKAL1 affects high-fat diet-induced fat accumulation and
glucose-stimulated insulin secretion in mice, indicating relevance to diabetes.
PLoS ONE
7
, e49055.
Pagliuca, F.W., Millman, J.R., Gu¨ rtler, M., Segel, M., Van Dervort, A., Ryu, J.H.,
Peterson, Q.P., Greiner, D., and Melton, D.A. (2014). Generation of functional
human pancreatic
b
cells in vitro. Cell
159
, 428–439.
Pasyk, E.A., Kang, Y., Huang, X., Cui, N., Sheu, L., and Gaisano, H.Y. (2004).
Syntaxin-1A binds the nucleotide-binding folds of sulphonylurea receptor 1 to
regulate the KATP channel. J. Biol. Chem.
279
, 4234–4240.
Pharmaceutical Medicine (2014). Drugs in clinical development for rheumatoid
arthritis summary and table. Pharmaceut. Med.
28
, 195–213.
Proks, P., Antcliff, J.F., Lippiat, J., Gloyn, A.L., Hattersley, A.T., and Ashcroft,
F.M. (2004). Molecular basis of Kir6.2 mutations associated with neonatal dia-
betes or neonatal diabetes plus neurological features. Proc. Natl. Acad. Sci.
USA
101
, 17539–17544.
Remedi, M.S., Rocheleau, J.V., Tong, A., Patton, B.L., McDaniel, M.L., Piston,
D.W., Koster, J.C., and Nichols, C.G. (2006). Hyperinsulinism in mice with
heterozygous loss of K(ATP) channels. Diabetologia
49
, 2368–2378.
Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A.,
O’Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., et al. (2014). Reversal
of diabetes with insulin-producing cells derived in vitro from human pluripotent
stem cells. Nat. Biotechnol.
32
, 1121–1133.
Rosengren, A.H., Braun, M., Mahdi, T., Andersson, S.A., Travers, M.E.,
Shigeto, M., Zhang, E., Almgren, P., Ladenvall, C., Axelsson, A.S., et al.
(2012). Reduced insulin exocytosis in human pancreatic
b
-cells with gene
variants linked to type 2 diabetes. Diabetes
61
, 1726–1733.
Saxena, R., Voight, B.F., Lyssenko, V., Burtt, N.P., de Bakker, P.I., Chen, H.,
Roix, J.J., Kathiresan, S., Hirschhorn, J.N., Daly, M.J., et al.; Diabetes
Genetics Initiative of Broad Institute of Harvard and MIT, Lund University,
and Novartis Institutes of BioMedical Research (2007). Genome-wide associ-
ation analysis identifies loci for type 2 diabetes and triglyceride levels. Science
316
, 1331–1336.
Cell Stem Cell
19
, 326–340, September 1, 2016
339