Table of Contents Table of Contents
Previous Page  70 128 Next Page
Information
Show Menu
Previous Page 70 128 Next Page
Page Background

transfections and providing the pUNO-Brn2 plasmid; Rui Dai for technical

assistance; and Jeff Stogsdill and Cagla Eroglu for supplying astrocytes and

providing protocols for co-culture experiments. This work was supported by

US NIH grants to C.A.G. and T.E.R. (R01DA036865 and U01HG007900),

an NIH Director’s New Innovator Award (DP2OD008586) and National Sci-

ence Foundation (NSF) Faculty Early Career Development (CAREER) Award

(CBET-1151035) to C.A.G., and NIH grant P30AR066527. J.B.B. was sup-

ported by an NIH Biotechnology Training Grant (T32GM008555).

Received: May 13, 2015

Revised: May 11, 2016

Accepted: June 30, 2016

Published: August 11, 2016

REFERENCES

Adler, A.F., Grigsby, C.L., Kulangara, K., Wang, H., Yasuda, R., and Leong,

K.W. (2012). Nonviral direct conversion of primary mouse embryonic fibro-

blasts to neuronal cells. Mol. Ther. Nucleic Acids

1

, e32.

Balboa, D., Weltner, J., Eurola, S., Trokovic, R., Wartiovaara, K., and

Otonkoski, T. (2015). Conditionally stabilized dCas9 activator for controlling

gene expression in human cell reprogramming and differentiation. Stem Cell

Reports

5

, 448–459.

Chakraborty, S., Ji, H., Kabadi, A.M., Gersbach, C.A., Christoforou, N., and

Leong, K.W. (2014). A CRISPR/Cas9-based system for reprogramming cell

lineage specification. Stem Cell Reports

3

, 940–947.

Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., P R Iyer, E., Lin, S.,

Kiani, S., Guzman, C.D., Wiegand, D.J., et al. (2015). Highly efficient Cas9-

mediated transcriptional programming. Nat. Methods

12

, 326–328.

Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W.,

Rangarajan, S., Shivalila, C.S., Dadon, D.B., and Jaenisch, R. (2013).

Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided

transcriptional activator system. Cell Res.

23

, 1163–1171.

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X.,

Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering

using CRISPR/Cas systems. Science

339

, 819–823.

Mouse ENCODE Consortium (2012). An encyclopedia of mouse DNA elements

(Mouse ENCODE). Genome Biol.

13

, 418.

Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a single

transfected cDNA converts fibroblasts to myoblasts. Cell

51

, 987–1000.

Gao, X., Yang, J., Tsang, J.C., Ooi, J., Wu, D., and Liu, P. (2013).

Reprogramming to pluripotency using designer TALE transcription factors

targeting enhancers. Stem Cell Reports

1

, 183–197.

Gao, X., Tsang, J.C., Gaba, F., Wu, D., Lu, L., and Liu, P. (2014). Comparison

of TALE designer transcription factors and the CRISPR/dCas9 in regulation

of gene expression by targeting enhancers. Nucleic Acids Res.

42

, e155.

Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-

Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al. (2013).

CRISPR-mediated modular RNA-guided regulation of transcription in eukary-

otes. Cell

154

, 442–451.

Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P.,

van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is

a stochastic process amenable to acceleration. Nature

462

, 595–601.

Hilton, I.B., D’Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E.,

Reddy, T.E., and Gersbach, C.A. (2015). Epigenome editing by a CRISPR-

Cas9-based acetyltransferase activates genes from promoters and en-

hancers. Nat. Biotechnol.

33

, 510–517.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier,

E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive

bacterial immunity. Science

337

, 816–821.

Kabadi, A.M., Ousterout, D.G., Hilton, I.B., and Gersbach, C.A. (2014).

Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral

vector. Nucleic Acids Res.

42

, e147.

Kearns, N.A., Pham, H., Tabak, B., Genga, R.M., Silverstein, N.J., Garber, M.,

and Maehr, R. (2015). Functional annotation of native enhancers with a Cas9-

histone demethylase fusion. Nat. Methods.

12

, 401–413.

Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji,

H., Ehrlich, L.I., et al. (2010). Epigenetic memory in induced pluripotent stem

cells. Nature

467

, 285–290.

Konermann, S., Brigham, M.D., Trevino, A.E., Hsu, P.D., Heidenreich, M.,

Cong, L., Platt, R.J., Scott, D.A., Church, G.M., and Zhang, F. (2013).

Optical control of mammalian endogenous transcription and epigenetic states.

Nature

500

, 472–476.

Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., Herms, S.,

Wernet, P., Ko¨ gler, G., Mu¨ ller, F.J., et al. (2012). Small molecules enable highly

efficient neuronal conversion of human fibroblasts. Nat. Methods

9

, 575–578.

Maeder, M.L., Angstman, J.F., Richardson, M.E., Linder, S.J., Cascio, V.M.,

Tsai, S.Q., Ho, Q.H., Sander, J.D., Reyon, D., Bernstein, B.E., et al. (2013a).

Targeted DNA demethylation and activation of endogenous genes using pro-

grammable TALE-TET1 fusion proteins. Nat. Biotechnol.

31

, 1137–1142.

Maeder, M.L., Linder, S.J., Cascio, V.M., Fu, Y., Ho, Q.H., and Joung, J.K.

(2013b). CRISPR RNA-guided activation of endogenous human genes. Nat.

Methods

10

, 977–979.

Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S.,

Yang, L., and Church, G.M. (2013a). CAS9 transcriptional activators for target

specificity screening and paired nickases for cooperative genome engineer-

ing. Nat. Biotechnol.

31

, 833–838.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E.,

and Church, G.M. (2013b). RNA-guided human genome engineering via Cas9.

Science

339

, 823–826.

Mendenhall, E.M., Williamson, K.E., Reyon, D., Zou, J.Y., Ram, O., Joung, J.K.,

and Bernstein, B.E. (2013). Locus-specific editing of histone modifications at

endogenous enhancers. Nat. Biotechnol.

31

, 1133–1136.

Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M.,

Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., et al.

(2013). RNA-guided gene activation by CRISPR-Cas9-based transcription

factors. Nat. Methods

10

, 973–976.

Polstein, L.R., Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Bledsoe, P.,

Song, L., Safi, A., Crawford, G.E., Reddy, T.E., and Gersbach, C.A. (2015).

Genome-wide specificity of DNA binding, gene regulation, and chromatin re-

modeling by TALE- and CRISPR/Cas9-based transcriptional activators.

Genome Res.

25

, 1158–1169.

Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P.,

and Lim, W.A. (2013). Repurposing CRISPR as an RNA-guided platform for

sequence-specific control of gene expression. Cell

152

, 1173–1183.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells

from mouse embryonic and adult fibroblast cultures by defined factors. Cell

126

, 663–676.

Thakore, P.I., Black, J.B., Hilton, I.B., and Gersbach, C.A. (2016). Editing the

epigenome: technologies for programmable transcription and epigenetic

modulation. Nat. Methods

13

, 127–137.

Treutlein, B., Lee, Q.Y., Camp, J.G., Mall, M., Koh, W., Shariati, S.A., Sim, S.,

Neff, N.F., Skotheim, J.M., Wernig, M., and Quake, S.R. (2016). Dissecting

direct reprogramming from fibroblast to neuron using single-cell RNA-seq.

Nature

534

, 391–395.

Vierbuchen, T., and Wernig, M. (2011). Direct lineage conversions: unnatural

but useful? Nat. Biotechnol.

29

, 892–907.

Vierbuchen, T., and Wernig, M. (2012). Molecular roadblocks for cellular re-

programming. Mol. Cell

47

, 827–838.

Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Su¨ dhof, T.C., and

Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by

defined factors. Nature

463

, 1035–1041.

Wei, S., Zou, Q., Lai, S., Zhang, Q., Li, L., Yan, Q., Zhou, X., Zhong, H., and Lai,

L. (2016). Conversion of embryonic stem cells into extraembryonic lineages by

CRISPR-mediated activators. Sci. Rep.

6

, 19648.

414

Cell Stem Cell

19

, 406–414, September 1, 2016