

wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Net-
works. Cell
162
, 675–686.
Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Aposto-
lou, E., Stadtfeld, M., Li, Y., Shioda, T., et al. (2010). Cell type of origin influ-
ences the molecular and functional properties of mouse induced pluripotent
stem cells. Nat. Biotechnol.
28
, 848–855.
Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zet-
sche, B., Shalem, O., Wu, X., Makarova, K.S., et al. (2015). In vivo genome
editing using Staphylococcus aureus Cas9. Nature
520
, 186–191.
Reinhardt,P., Schmid, B., Burbulla,L.F., Scho¨ ndorf,D.C.,Wagner, L., Glatza, M.,
Ho¨ ing,S.,Hargus,G.,Heck,S.A., Dhingra,A., etal.(2013).Geneticcorrection ofa
LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-
dependent changes in gene expression. Cell Stem Cell
12
, 354–367.
Rideout, W.M., 3rd, Hochedlinger, K., Kyba, M., Daley, G.Q., and Jaenisch, R.
(2002). Correction of a genetic defect by nuclear transplantation and combined
cell and gene therapy. Cell
109
, 17–27.
Robert, F., Barbeau, M., E´ thier, S., Dostie, J., and Pelletier, J. (2015). Pharma-
cological inhibition of DNA-PK stimulates Cas9-mediated genome editing.
Genome Med.
7
, 93.
Robinton, D.A., and Daley, G.Q. (2012). The promise of induced pluripotent
stem cells in research and therapy. Nature
481
, 295–305.
Rouet, P., Smih, F., and Jasin, M. (1994a). Expression of a site-specific endo-
nuclease stimulates homologous recombination in mammalian cells. Proc.
Natl. Acad. Sci. USA
91
, 6064–6068.
Rouet, P., Smih, F., and Jasin, M. (1994b). Introduction of double-strand
breaks into the genome of mouse cells by expression of a rare-cutting endo-
nuclease. Mol. Cell. Biol.
14
, 8096–8106.
Rouhani, F., Kumasaka, N., de Brito, M.C., Bradley, A., Vallier, L., and Gaffney,
D. (2014). Genetic background drives transcriptional variation in human
induced pluripotent stem cells. PLoS Genet.
10
, e1004432.
Ruby, K.M., and Zheng, B. (2009). Gene targeting in a HUES line of human
embryonic stem cells via electroporation. Stem Cells
27
, 1496–1506.
Ryan, S.D., Dolatabadi, N., Chan, S.F., Zhang, X., Akhtar, M.W., Parker, J.,
Soldner, F., Sunico, C.R., Nagar, S., Talantova, M., et al. (2013). Isogenic
human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction
in MEF2-PGC1
a
transcription. Cell
155
, 1351–1364.
Sato, T., and Clevers, H. (2013). Growing self-organizing mini-guts from a sin-
gle intestinal stem cell: mechanism and applications. Science
340
, 1190–1194.
Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange,
D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., and Clevers, H. (2009). Sin-
gle Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal
niche. Nature
459
, 262–265.
Sato, T., Stange, D.E., Ferrante, M., Vries, R.G., Van Es, J.H., Van den Brink, S.,
Van Houdt, W.J., Pronk, A., Van Gorp, J., Siersema, P.D., and Clevers, H. (2011).
Long-term expansion of epithelial organoids from human colon, adenoma,
adenocarcinoma, and Barrett’s epithelium. Gastroenterology
141
, 1762–1772.
Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sa-
saki, N., Boymans, S., Cuppen, E., van der Ent, C.K., et al. (2013). Functional
repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic
fibrosis patients. Cell Stem Cell
13
, 653–658.
Sebastiano, V., Zhen, H.H., Haddad, B., Bashkirova, E., Melo, S.P., Wang, P.,
Leung, T.L., Siprashvili, Z., Tichy, A., Li, J., et al. (2014). Human COL7A1-cor-
rected induced pluripotent stem cells for the treatment of recessive dystrophic
epidermolysis bullosa. Sci. Transl. Med.
6
, 264ra163.
Sexton, A.N., Regalado, S.G., Lai, C.S., Cost, G.J., O’Neil, C.M., Urnov, F.D.,
Gregory, P.D., Jaenisch, R., Collins, K., and Hockemeyer, D. (2014). Genetic
and molecular identification of three human TPP1 functions in telomerase ac-
tion: recruitment, activation, and homeostasis set point regulation. Genes Dev.
28
, 1885–1899.
Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S.,
Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014). Genome-
scale CRISPR-Cas9 knockout screening in human cells. Science
343
, 84–87.
Sheridan, C. (2015). CRISPR germline editing reverberates through biotech in-
dustry. Nat. Biotechnol.
33
, 431–432.
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T.,
Wang, F., and Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases
determines pyroptotic cell death. Nature
526
, 660–665.
Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F.
(2016). Rationally engineered Cas9 nucleases with improved specificity. Sci-
ence
351
, 84–88.
Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brod-
sky, R.A., Zhang, K., Cheng, L., and Ye, Z. (2014). Whole-genome sequencing
analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome
editing in human iPSCs. Cell Stem Cell
15
, 12–13.
Soldner, F., and Jaenisch, R. (2012). Medicine. iPSC disease modeling. Sci-
ence
338
, 1155–1156.
Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Har-
gus, G., Blak, A., Cooper, O., Mitalipova, M., et al. (2009). Parkinson’s disease
patient-derived induced pluripotent stem cells free of viral reprogramming fac-
tors. Cell
136
, 964–977.
Soldner, F., Laganie` re, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan,
R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., et al. (2011). Generation
of isogenic pluripotent stem cells differing exclusively at two early onset Par-
kinson point mutations. Cell
146
, 318–331.
Soldner, F., Stelzer, Y., Shivalila, C., Abraham, B., Latourelle, J., Barrasa, I.,
Goldmann, J.J., Myers, R., Young, R., and Jaenisch, R. (2016). Parkinson-
associated risk variant in enhancer element produces subtle effect on target
gene expression. Nature, in press. Published online April 20, 2016.
http://dx. doi.org/10.1038/nature17939.Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle,
K., Hoskins, E.E., Kalinichenko, V.V., Wells, S.I., Zorn, A.M., et al. (2011).
Directed differentiation of human pluripotent stem cells into intestinal tissue
in vitro. Nature
470
, 105–109.
Sterneckert, J.L., Reinhardt, P., and Scho¨ ler, H.R. (2014). Investigating human
disease using stem cell models. Nat. Rev. Genet.
15
, 625–639.
Studer, L., Vera, E., and Cornacchia, D. (2015). Programming and Reprogram-
ming Cellular Age in the Era of Induced Pluripotency. Cell StemCell
16
, 591–600.
Suzuki, S., Sargent, R.G., Illek, B., Fischer, H., Esmaeili-Shandiz, A., Yezzi,
M.J., Lee, A., Yang, Y., Kim, S., Renz, P., et al. (2016). TALENs Facilitate Sin-
gle-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Sub-
mucosal Gland Cell-derived CF-iPSCs. Mol. Ther. Nucleic Acids
5
, e273.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells
from mouse embryonic and adult fibroblast cultures by defined factors. Cell
126
, 663–676.
Takahashi, K., and Yamanaka, S. (2015). A developmental framework for
induced pluripotency. Development
142
, 3274–3285.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.,
and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human
fibroblasts by defined factors. Cell
131
, 861–872.
Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang,
R.R., Ueno, Y., Zheng, Y.W., Koike, N., et al. (2013). Vascularized and functional
human liver from an iPSC-derived organ bud transplant. Nature
499
, 481–484.
Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D.
(2014). A protein-tagging system for signal amplification in gene expression
and fluorescence imaging. Cell
159
, 635–646.
Tebas, P., Stein, D., Tang, W.W., Frank, I., Wang, S.Q., Lee, G., Spratt, S.K.,
Surosky, R.T., Giedlin, M.A., Nichol, G., et al. (2014). Gene editing of CCR5
in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med.
370
, 901–910.
Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L.,
Gardner, R.L., and McKay, R.D. (2007). New cell lines frommouse epiblast share
defining features with human embryonic stem cells. Nature
448
, 196–199.
Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A.,
Reddy, J., Fan, Z.P., Maetzel, D., Ganz, K., Shi, L., et al. (2014). Systematic
identification of culture conditions for induction and maintenance of naive
human pluripotency. Cell Stem Cell
15
, 471–487.
Thomas, K.R., and Capecchi, M.R. (1987). Site-directed mutagenesis by gene
targeting in mouse embryo-derived stem cells. Cell
51
, 503–512.
Cell Stem Cell
18
, May 5, 2016
585
Cell Stem Cell
Review