Table of Contents Table of Contents
Previous Page  25 128 Next Page
Information
Show Menu
Previous Page 25 128 Next Page
Page Background

wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Net-

works. Cell

162

, 675–686.

Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Aposto-

lou, E., Stadtfeld, M., Li, Y., Shioda, T., et al. (2010). Cell type of origin influ-

ences the molecular and functional properties of mouse induced pluripotent

stem cells. Nat. Biotechnol.

28

, 848–855.

Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zet-

sche, B., Shalem, O., Wu, X., Makarova, K.S., et al. (2015). In vivo genome

editing using Staphylococcus aureus Cas9. Nature

520

, 186–191.

Reinhardt,P., Schmid, B., Burbulla,L.F., Scho¨ ndorf,D.C.,Wagner, L., Glatza, M.,

Ho¨ ing,S.,Hargus,G.,Heck,S.A., Dhingra,A., etal.(2013).Geneticcorrection ofa

LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-

dependent changes in gene expression. Cell Stem Cell

12

, 354–367.

Rideout, W.M., 3rd, Hochedlinger, K., Kyba, M., Daley, G.Q., and Jaenisch, R.

(2002). Correction of a genetic defect by nuclear transplantation and combined

cell and gene therapy. Cell

109

, 17–27.

Robert, F., Barbeau, M., E´ thier, S., Dostie, J., and Pelletier, J. (2015). Pharma-

cological inhibition of DNA-PK stimulates Cas9-mediated genome editing.

Genome Med.

7

, 93.

Robinton, D.A., and Daley, G.Q. (2012). The promise of induced pluripotent

stem cells in research and therapy. Nature

481

, 295–305.

Rouet, P., Smih, F., and Jasin, M. (1994a). Expression of a site-specific endo-

nuclease stimulates homologous recombination in mammalian cells. Proc.

Natl. Acad. Sci. USA

91

, 6064–6068.

Rouet, P., Smih, F., and Jasin, M. (1994b). Introduction of double-strand

breaks into the genome of mouse cells by expression of a rare-cutting endo-

nuclease. Mol. Cell. Biol.

14

, 8096–8106.

Rouhani, F., Kumasaka, N., de Brito, M.C., Bradley, A., Vallier, L., and Gaffney,

D. (2014). Genetic background drives transcriptional variation in human

induced pluripotent stem cells. PLoS Genet.

10

, e1004432.

Ruby, K.M., and Zheng, B. (2009). Gene targeting in a HUES line of human

embryonic stem cells via electroporation. Stem Cells

27

, 1496–1506.

Ryan, S.D., Dolatabadi, N., Chan, S.F., Zhang, X., Akhtar, M.W., Parker, J.,

Soldner, F., Sunico, C.R., Nagar, S., Talantova, M., et al. (2013). Isogenic

human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction

in MEF2-PGC1

a

transcription. Cell

155

, 1351–1364.

Sato, T., and Clevers, H. (2013). Growing self-organizing mini-guts from a sin-

gle intestinal stem cell: mechanism and applications. Science

340

, 1190–1194.

Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange,

D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., and Clevers, H. (2009). Sin-

gle Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal

niche. Nature

459

, 262–265.

Sato, T., Stange, D.E., Ferrante, M., Vries, R.G., Van Es, J.H., Van den Brink, S.,

Van Houdt, W.J., Pronk, A., Van Gorp, J., Siersema, P.D., and Clevers, H. (2011).

Long-term expansion of epithelial organoids from human colon, adenoma,

adenocarcinoma, and Barrett’s epithelium. Gastroenterology

141

, 1762–1772.

Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sa-

saki, N., Boymans, S., Cuppen, E., van der Ent, C.K., et al. (2013). Functional

repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic

fibrosis patients. Cell Stem Cell

13

, 653–658.

Sebastiano, V., Zhen, H.H., Haddad, B., Bashkirova, E., Melo, S.P., Wang, P.,

Leung, T.L., Siprashvili, Z., Tichy, A., Li, J., et al. (2014). Human COL7A1-cor-

rected induced pluripotent stem cells for the treatment of recessive dystrophic

epidermolysis bullosa. Sci. Transl. Med.

6

, 264ra163.

Sexton, A.N., Regalado, S.G., Lai, C.S., Cost, G.J., O’Neil, C.M., Urnov, F.D.,

Gregory, P.D., Jaenisch, R., Collins, K., and Hockemeyer, D. (2014). Genetic

and molecular identification of three human TPP1 functions in telomerase ac-

tion: recruitment, activation, and homeostasis set point regulation. Genes Dev.

28

, 1885–1899.

Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S.,

Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014). Genome-

scale CRISPR-Cas9 knockout screening in human cells. Science

343

, 84–87.

Sheridan, C. (2015). CRISPR germline editing reverberates through biotech in-

dustry. Nat. Biotechnol.

33

, 431–432.

Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T.,

Wang, F., and Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases

determines pyroptotic cell death. Nature

526

, 660–665.

Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F.

(2016). Rationally engineered Cas9 nucleases with improved specificity. Sci-

ence

351

, 84–88.

Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brod-

sky, R.A., Zhang, K., Cheng, L., and Ye, Z. (2014). Whole-genome sequencing

analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome

editing in human iPSCs. Cell Stem Cell

15

, 12–13.

Soldner, F., and Jaenisch, R. (2012). Medicine. iPSC disease modeling. Sci-

ence

338

, 1155–1156.

Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Har-

gus, G., Blak, A., Cooper, O., Mitalipova, M., et al. (2009). Parkinson’s disease

patient-derived induced pluripotent stem cells free of viral reprogramming fac-

tors. Cell

136

, 964–977.

Soldner, F., Laganie` re, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan,

R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., et al. (2011). Generation

of isogenic pluripotent stem cells differing exclusively at two early onset Par-

kinson point mutations. Cell

146

, 318–331.

Soldner, F., Stelzer, Y., Shivalila, C., Abraham, B., Latourelle, J., Barrasa, I.,

Goldmann, J.J., Myers, R., Young, R., and Jaenisch, R. (2016). Parkinson-

associated risk variant in enhancer element produces subtle effect on target

gene expression. Nature, in press. Published online April 20, 2016.

http://dx. doi.org/10.1038/nature17939.

Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle,

K., Hoskins, E.E., Kalinichenko, V.V., Wells, S.I., Zorn, A.M., et al. (2011).

Directed differentiation of human pluripotent stem cells into intestinal tissue

in vitro. Nature

470

, 105–109.

Sterneckert, J.L., Reinhardt, P., and Scho¨ ler, H.R. (2014). Investigating human

disease using stem cell models. Nat. Rev. Genet.

15

, 625–639.

Studer, L., Vera, E., and Cornacchia, D. (2015). Programming and Reprogram-

ming Cellular Age in the Era of Induced Pluripotency. Cell StemCell

16

, 591–600.

Suzuki, S., Sargent, R.G., Illek, B., Fischer, H., Esmaeili-Shandiz, A., Yezzi,

M.J., Lee, A., Yang, Y., Kim, S., Renz, P., et al. (2016). TALENs Facilitate Sin-

gle-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Sub-

mucosal Gland Cell-derived CF-iPSCs. Mol. Ther. Nucleic Acids

5

, e273.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells

from mouse embryonic and adult fibroblast cultures by defined factors. Cell

126

, 663–676.

Takahashi, K., and Yamanaka, S. (2015). A developmental framework for

induced pluripotency. Development

142

, 3274–3285.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.,

and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human

fibroblasts by defined factors. Cell

131

, 861–872.

Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang,

R.R., Ueno, Y., Zheng, Y.W., Koike, N., et al. (2013). Vascularized and functional

human liver from an iPSC-derived organ bud transplant. Nature

499

, 481–484.

Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D.

(2014). A protein-tagging system for signal amplification in gene expression

and fluorescence imaging. Cell

159

, 635–646.

Tebas, P., Stein, D., Tang, W.W., Frank, I., Wang, S.Q., Lee, G., Spratt, S.K.,

Surosky, R.T., Giedlin, M.A., Nichol, G., et al. (2014). Gene editing of CCR5

in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med.

370

, 901–910.

Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L.,

Gardner, R.L., and McKay, R.D. (2007). New cell lines frommouse epiblast share

defining features with human embryonic stem cells. Nature

448

, 196–199.

Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A.,

Reddy, J., Fan, Z.P., Maetzel, D., Ganz, K., Shi, L., et al. (2014). Systematic

identification of culture conditions for induction and maintenance of naive

human pluripotency. Cell Stem Cell

15

, 471–487.

Thomas, K.R., and Capecchi, M.R. (1987). Site-directed mutagenesis by gene

targeting in mouse embryo-derived stem cells. Cell

51

, 503–512.

Cell Stem Cell

18

, May 5, 2016

585

Cell Stem Cell

Review