Table of Contents Table of Contents
Previous Page  24 128 Next Page
Information
Show Menu
Previous Page 24 128 Next Page
Page Background

Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji,

H., Ehrlich, L.I.R., et al. (2010). Epigenetic memory in induced pluripotent stem

cells. Nature

467

, 285–290.

Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z.,

Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., et al. (2015). Engineered

CRISPR-Cas9 nucleases with altered PAM specificities. Nature

523

, 481–485.

Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Topkar, V.V., Zheng, Z.,

and Joung, J.K. (2015a). Broadening the targeting range of Staphylococcus

aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol.

33

,

1293–1298.

Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z.,

Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., et al. (2015b). Engineered

CRISPR-Cas9 nucleases with altered PAM specificities. Nature

523

, 481–485.

Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng,

Z., and Joung, J.K. (2016). High-fidelity CRISPR-Cas9 nucleases with no

detectable genome-wide off-target effects. Nature

529

, 490–495.

Knight, S.C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L.B., Bosanac, L.,

Zhang, E.T., El Beheiry, M., Masson, J.B., Dahan, M., et al. (2015). Dynamics

of CRISPR-Cas9 genome interrogation in living cells. Science

350

, 823–826.

Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O.,

Barcena, C., Hsu, P.D., Habib, N., Gootenberg, J.S., Nishimasu, H., et al.

(2015). Genome-scale transcriptional activation by an engineered CRISPR-

Cas9 complex. Nature

517

, 583–588.

Kotini, A.G., Chang, C.J., Boussaad, I., Delrow, J.J., Dolezal, E.K., Nagula-

pally, A.B., Perna, F., Fishbein, G.A., Klimek, V.M., Hawkins, R.D., et al.

(2015). Functional analysis of a chromosomal deletion associated with myelo-

dysplastic syndromes using isogenic human induced pluripotent stem cells.

Nat. Biotechnol.

33

, 646–655.

Kytta¨ la¨ , A., Moraghebi, R., Valensisi, C., Kettunen, J., Andrus, C., Pasumarthy,

K.K., Nakanishi, M., Nishimura, K., Ohtaka, M., Weltner, J., et al. (2016). Ge-

netic Variability Overrides the Impact of Parental Cell Type and Determines

iPSC Differentiation Potential. Stem Cell Reports

6

, 200–212.

Lancaster, M.A., and Knoblich, J.A. (2014). Organogenesis in a dish: modeling

development and disease using organoid technologies. Science

345

, 1247125.

Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles,

M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013).

Cerebral organoids model human brain development and microcephaly. Na-

ture

501

, 373–379.

Li, Y., Wang, H., Muffat, J., Cheng, A.W., Orlando, D.A., Love´ n, J., Kwok, S.M.,

Feldman, D.A., Bateup, H.S., Gao, Q., et al. (2013). Global transcriptional and

translational repression in human-embryonic-stem-cell-derived Rett syn-

drome neurons. Cell Stem Cell

13

, 446–458.

Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., Lv, J., Xie, X., Chen,

Y., Li, Y., et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronu-

clear zygotes. Protein Cell

6

, 363–372.

Liao, J., and Karnik, R. (2015). Targeted disruption of DNMT1, DNMT3A and

DNMT3B in human embryonic stem cells. Nat. Genet.

47

, 469–478.

Lin, S., Staahl, B.T., Alla, R.K., and Doudna, J.A. (2014). Enhanced homology-

directed human genome engineering by controlled timing of CRISPR/Cas9

delivery. eLife

3

, e04766.

Lombardo, A., Genovese, P., Beausejour, C.M., Colleoni, S., Lee, Y.L., Kim,

K.A., Ando, D., Urnov, F.D., Galli, C., Gregory, P.D., et al. (2007). Gene editing

in human stem cells using zinc finger nucleases and integrase-defective lenti-

viral vector delivery. Nat. Biotechnol.

25

, 1298–1306.

Ma, N., Liao, B., Zhang, H., Wang, L., Shan, Y., Xue, Y., Huang, K., Chen, S.,

Zhou, X., Chen, Y., et al. (2013). Transcription activator-like effector nuclease

(TALEN)-mediated gene correction in integration-free

b

-thalassemia induced

pluripotent stem cells. J. Biol. Chem.

288

, 34671–34679.

Maeder, M.L., Angstman, J.F., Richardson, M.E., Linder, S.J., Cascio, V.M.,

Tsai, S.Q., Ho, Q.H., Sander, J.D., Reyon, D., Bernstein, B.E., et al. (2013). Tar-

geted DNA demethylation and activation of endogenous genes using pro-

grammable TALE-TET1 fusion proteins. Nat. Biotechnol.

31

, 1137–1142.

Maetzel, D., Sarkar, S., Wang, H., Abi-Mosleh, L., Xu, P., Cheng, A.W., Gao, Q.,

Mitalipova, M., and Jaenisch, R. (2014). Genetic and chemical correction of

cholesterol accumulation and impaired autophagy in hepatic and neural cells

derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Re-

ports

2

, 866–880.

Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld,

M., Yachechko, R., Tchieu, J., Jaenisch, R., et al. (2007). Directly reprog-

rammed fibroblasts show global epigenetic remodeling and widespread tissue

contribution. Cell Stem Cell

1

, 55–70.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E.,

and Church, G.M. (2013). RNA-guided human genome engineering via Cas9.

Science

339

, 823–826.

Mandegar, M.A., Huebsch, N., Frolov, E.B., Shin, E., Truong, A., Olvera, M.P.,

Chan, A.H., Miyaoka, Y., Holmes, K., Spencer, C.I., et al. (2016). CRISPR Inter-

ference Efficiently Induces Specific and Reversible Gene Silencing in Human

iPSCs. Cell Stem Cell

18

, 541–553.

Marraffini, L.A. (2015). CRISPR-Cas immunity in prokaryotes. Nature

526

, 55–61.

Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse

embryos cultured in medium conditioned by teratocarcinoma stem cells.

Proc. Natl. Acad. Sci. USA

78

, 7634–7638.

Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., and

Ploegh, H.L. (2015). Increasing the efficiency of precise genome editing with

CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol.

33

, 538–542.

Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Wata-

nabe, T., Kanai, T., and Sato, T. (2015). Modeling colorectal cancer using

CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat.

Med.

21

, 256–262.

Meister, G.E., Chandrasegaran, S., and Ostermeier, M. (2010). Heterodimeric

DNA methyltransferases as a platform for creating designer zinc finger meth-

yltransferases for targeted DNA methylation in cells. Nucleic Acids Res.

38

,

1749–1759.

Merkle, F.T., and Eggan, K. (2013). Modeling human disease with pluripotent

stem cells: from genome association to function. Cell Stem Cell

12

, 656–668.

Miller, J.D., Ganat, Y.M., Kishinevsky, S., Bowman, R.L., Liu, B., Tu, E.Y., Man-

dal, P.K., Vera, E., Shim, J.W., Kriks, S., et al. (2013). Human iPSC-based

modeling of late-onset disease via progerin-induced aging. Cell Stem Cell

13

, 691–705.

Miyaoka, Y., Chan, A.H., Judge, L.M., Yoo, J., Huang, M., Nguyen, T.D., Lizar-

raga, P.P., So, P.L., and Conklin, B.R. (2014). Isolation of single-base genome-

edited human iPS cells without antibiotic selection. Nat. Methods

11

, 291–293.

Morton, J., Davis, M.W., Jorgensen, E.M., and Carroll, D. (2006). Induction and

repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabdi-

tis elegans somatic cells. Proc. Natl. Acad. Sci. USA

103

, 16370–16375.

Nelles, D.A., Fang, M.Y., O’Connell, M.R., Xu, J.L., Markmiller, S.J., Doudna,

J.A., and Yeo, G.W. (2016). Programmable RNA Tracking in Live Cells with

CRISPR/Cas9. Cell

165

, 488–496.

Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell

Stem Cell

4

, 487–492.

Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si,

W., Li, W., et al. (2014). Generation of gene-modified cynomolgus monkey via

Cas9/RNA-mediated gene targeting in one-cell embryos. Cell

156

, 836–843.

O’Connell, M.R., Oakes, B.L., Sternberg, S.H., East-Seletsky, A., Kaplan, M.,

and Doudna, J.A. (2014). Programmable RNA recognition and cleavage by

CRISPR/Cas9. Nature

516

, 263–266.

Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-

competent induced pluripotent stem cells. Nature

448

, 313–317.

Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H.,

Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic

cells to pluripotency with defined factors. Nature

451

, 141–146.

Park, C.Y., Kim, D.H., Son, J.S., Sung, J.J., Lee, J., Bae, S., Kim, J.H., Kim,

D.W., and Kim, J.S. (2015). Functional Correction of Large Factor VIII Gene

Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using

CRISPR-Cas9. Cell Stem Cell

17

, 213–220.

Parnas, O., Jovanovic, M., Eisenhaure, T.M., Herbst, R.H., Dixit, A., Ye, C.J.,

Przybylski, D., Platt, R.J., Tirosh, I., Sanjana, N.E., et al. (2015). A Genome-

584

Cell Stem Cell

18

, May 5, 2016

Cell Stem Cell

Review