Table of Contents Table of Contents
Previous Page  26 128 Next Page
Information
Show Menu
Previous Page 26 128 Next Page
Page Background

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J.,

Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from

human blastocysts. Science

282

, 1145–1147.

Tsai, S.Q., Wyvekens, N., Khayter, C., Foden, J.A., Thapar, V., Reyon, D., Good-

win, M.J., Aryee, M.J., and Joung, J.K. (2014). Dimeric CRISPRRNA-guided FokI

nucleases for highly specific genome editing. Nat. Biotechnol.

32

, 569–576.

Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wy-

vekens, N., Khayter, C., Iafrate, A.J., Le, L.P., et al. (2015). GUIDE-seq enables

genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat.

Biotechnol.

33

, 187–197.

Urbach, A., Schuldiner, M., and Benvenisty, N. (2004). Modeling for Lesch-Ny-

han disease by gene targeting in human embryonic stem cells. Stem Cells

22

,

635–641.

Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S.,

Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. (2005). Highly

efficient endogenous human gene correction using designed zinc-finger

nucleases. Nature

435

, 646–651.

Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010).

Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet.

11

,

636–646.

Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and

Jaenisch, R. (2013). One-step generation of mice carryingmutations inmultiple

genes by CRISPR/Cas-mediated genome engineering. Cell

153

, 910–918.

Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014a). Genetic screens

in human cells using the CRISPR-Cas9 system. Science

343

, 80–84.

Wang, Y., Liang, P., Lan, F., Wu, H., Lisowski, L., Gu, M., Hu, S., Kay, M.A., Ur-

nov, F.D., Shinnawi, R., et al. (2014b). Genome editing of isogenic human

induced pluripotent stem cells recapitulates long QT phenotype for drug

testing. J. Am. Coll. Cardiol.

64

, 451–459.

Wang, T., Birsoy, K., Hughes, N.W., Krupczak, K.M., Post, Y., Wei, J.J.,

Lander, E.S., and Sabatini, D.M. (2015a). Identification and characterization

of essential genes in the human genome. Science

350

, 1096–1101.

Wang, X., Wang, Y., Wu, X., Wang, J., Wang, Y., Qiu, Z., Chang, T., Huang, H.,

Lin, R.J., and Yee, J.K. (2015b). Unbiased detection of off-target cleavage by

CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat.

Biotechnol.

33

, 175–178.

Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Man-

dal, P.K., Smith, Z.D., Meissner, A., et al. (2010). Highly efficient reprogram-

ming to pluripotency and directed differentiation of human cells with synthetic

modified mRNA. Cell Stem Cell

7

, 618–630.

Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya,

T., Takahashi, J.B., Nishikawa, S., Nishikawa, S., Muguruma, K., and Sasai, Y.

(2007). A ROCK inhibitor permits survival of dissociated human embryonic

stem cells. Nat. Biotechnol.

25

, 681–686.

Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger,

K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibro-

blasts into a pluripotent ES-cell-like state. Nature

448

, 318–324.

Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Ha¨ ma¨ la¨ inen,

R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al. (2009). piggyBac

transposition reprograms fibroblasts to induced pluripotent stem cells. Nature

458

, 766–770.

Wood, A.J., Lo, T.W., Zeitler, B., Pickle, C.S., Ralston, E.J., Lee, A.H., Amora,

R., Miller, J.C., Leung, E., Meng, X., et al. (2011). Targeted genome editing

across species using ZFNs and TALENs. Science

333

, 307.

Wu, X., Kriz, A.J., and Sharp, P.A. (2014a). Target specificity of the CRISPR-

Cas9 system. Quant. Biol.

2

, 59–70.

Wu, X., Scott, D.A., Kriz, A.J., Chiu, A.C., Hsu, P.D., Dadon, D.B., Cheng, A.W.,

Trevino, A.E., Konermann, S., Chen, S., et al. (2014b). Genome-wide binding of

the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol.

32

,

670–676.

Xie, F., Ye, L., Chang, J.C., Beyer, A.I., Wang, J., Muench, M.O., and Kan,

Y.W. (2014). Seamless gene correction of

b

-thalassemia mutations in pa-

tient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res.

24

,

1526–1533.

Xue, H., Wu, S., Papadeas, S.T., Spusta, S., Swistowska, A.M., MacArthur,

C.C., Mattson, M.P., Maragakis, N.J., Capecchi, M.R., Rao, M.S., et al.

(2009). A targeted neuroglial reporter line generated by homologous recombi-

nation in human embryonic stem cells. Stem Cells

27

, 1836–1846.

Yamada, M., Johannesson, B., Sagi, I., Burnett, L.C., Kort, D.H., Prosser,

R.W., Paull, D., Nestor, M.W., Freeby, M., Greenberg, E., et al. (2014). Human

oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid plurip-

otent stem cells. Nature

510

, 533–536.

Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R.

(2013). One-step generation of mice carrying reporter and conditional alleles

by CRISPR/Cas-mediated genome engineering. Cell

154

, 1370–1379.

Ye, L., Wang, J., Beyer, A.I., Teque, F., Cradick, T.J., Qi, Z., Chang, J.C., Bao,

G., Muench, M.O., Yu, J., et al. (2014). Seamless modification of wild-type

induced pluripotent stem cells to the natural CCR5

D

32 mutation confers resis-

tance to HIV infection. Proc. Natl. Acad. Sci. USA

111

, 9591–9596.

Young, J.E., Boulanger-Weill, J., Williams, D.A., Woodruff, G., Buen, F., Re-

villa, A.C., Herrera, C., Israel, M.A., Yuan, S.H., Edland, S.D., and Goldstein,

L.S. (2015). Elucidating molecular phenotypes caused by the SORL1 Alz-

heimer’s disease genetic risk factor using human induced pluripotent stem

cells. Cell Stem Cell

16

, 373–385.

Young, C.S., Hicks, M.R., Ermolova, N.V., Nakano, H., Jan, M., Younesi, S.,

Karumbayaram, S., Kumagai-Cresse, C., Wang, D., Zack, J.A., et al. (2016).

A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD

Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Cell

Stem Cell

18

, 533–540.

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L.,

Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced

pluripotent stem cell lines derived from human somatic cells. Science

318

,

1917–1920.

Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I.I., and Thomson,

J.A. (2009). Human induced pluripotent stem cells free of vector and transgene

sequences. Science

324

, 797–801.

Yu, Z., Ren, M., Wang, Z., Zhang, B., Rong, Y.S., Jiao, R., and Gao, G. (2013).

Highly efficient genome modifications mediated by CRISPR/Cas9 in

Drosophila. Genetics

195

, 289–291.

Yu, C., Liu, Y., Ma, T., Liu, K., Xu, S., Zhang, Y., Liu, H., La Russa, M., Xie, M.,

Ding, S., and Qi, L.S. (2015). Small molecules enhance CRISPR genome edit-

ing in pluripotent stem cells. Cell Stem Cell

16

, 142–147.

Yusa, K. (2013). Seamless genome editing in human pluripotent stem cells

using custom endonuclease-based gene targeting and the piggyBac trans-

poson. Nat. Protoc.

8

, 2061–2078.

Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., Liu, P.Q., Paschon,

D.E., Miranda, E., Ordo´ n˜ ez, A., Hannan, N.R., Rouhani, F.J., et al. (2011). Tar-

geted gene correction of

a

1-antitrypsin deficiency in induced pluripotent stem

cells. Nature

478

, 391–394.

Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova,

K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al.

(2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas

system. Cell

163

, 759–771.

Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W.,

Wang, L., et al. (2009). iPS cells produce viable mice through tetraploid

complementation. Nature

461

, 86–90.

Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y., and Wei, W. (2014). High-

throughput screening of a CRISPR/Cas9 library for functional genomics in

human cells. Nature

509

, 487–491.

Zou, J., Maeder, M.L., Mali, P., Pruett-Miller, S.M., Thibodeau-Beganny, S.,

Chou, B.K., Chen, G., Ye, Z., Park, I.H., Daley, G.Q., et al. (2009). Gene target-

ing of a disease-related gene in human induced pluripotent stem and embry-

onic stem cells. Cell Stem Cell

5

, 97–110.

Zou, J., Mali, P., Huang, X., Dowey, S.N., and Cheng, L. (2011). Site-specific

gene correction of a point mutation in human iPS cells derived from an adult

patient with sickle cell disease. Blood

118

, 4599–4608.

Zwaka, T.P., and Thomson, J.A. (2003). Homologous recombination in human

embryonic stem cells. Nat. Biotechnol.

21

, 319–321.

586

Cell Stem Cell

18

, May 5, 2016

Cell Stem Cell

Review