

adult stem cell properties derived from pluripotent stem cells. Stem Cell
Reports
2
, 838–852.
Fredriksson, N.J., Ny, L., Nilsson, J.A., and Larsson, E. (2014). Systematic
analysis of noncoding somatic mutations and gene expression alterations
across 14 tumor types. Nat. Genet.
46
, 1258–1263.
Frock, R.L., Hu, J., Meyers, R.M., Ho, Y.J., and Kii, E. (2015). Genome-wide
detection of DNA double-stranded breaks induced by engineered nucleases.
Nat. Biotechnol.
33
, 179–186.
Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and
Sander, J.D. (2013). High-frequency off-target mutagenesis induced by
CRISPR-Cas nucleases in human cells. Nat. Biotechnol.
31
, 822–826.
Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014).
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
Nat. Biotechnol.
32
, 279–284.
Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009). Effi-
cient induction of transgene-free human pluripotent stem cells using a vector
based on Sendai virus, an RNA virus that does not integrate into the host
genome. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
85
, 348–362.
Gabriel, R., Lombardo, A., Arens, A., Miller, J.C., Genovese, P., Kaeppel, C.,
Nowrouzi, A., Bartholomae, C.C., Wang, J., Friedman, G., et al. (2011). An
unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Bio-
technol.
29
, 816–823.
Gibson, G. (2011). Rare and common variants: twenty arguments. Nat. Rev.
Genet.
13
, 135–145.
Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead,
E.H., Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al. (2014).
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell
159
, 647–661.
Gonza´ lez, F., Zhu, Z., Shi, Z.D., Lelli, K., Verma, N., Li, Q.V., and Huangfu, D.
(2014). An iCRISPR platform for rapid, multiplexable, and inducible genome
editing in human pluripotent stem cells. Cell Stem Cell
15
, 215–226.
Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Har-
rison, M.M., Wildonger, J., and O’Connor-Giles, K.M. (2013). Genome engi-
neering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics
194
, 1029–1035.
Guenther, M.G., Frampton, G.M., Soldner, F., Hockemeyer, D., Mitalipova, M.,
Jaenisch, R., and Young, R.A. (2010). Chromatin structure and gene expres-
sion programs of human embryonic and induced pluripotent stem cells. Cell
Stem Cell
7
, 249–257.
Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai,
Y., Tang, Y., et al. (2015). CRISPR Inversion of CTCF Sites Alters Genome
Topology and Enhancer/Promoter Function. Cell
162
, 900–910.
Gurdon, J.B. (1962). The developmental capacity of nuclei taken from in-
testinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol.
10
,
622–640.
Gurdon, J. (1963). Nuclear transplantation in Amphibia and the importance of
stable nuclear changes in cellular differentiation. Q. Rev. Biol.
38
, 54–78.
Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R., Ma-
cLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., et al.
(2015). High-Resolution CRISPR Screens Reveal Fitness Genes and Geno-
type-Specific Cancer Liabilities. Cell
163
, 1515–1526.
Hochedlinger, K., and Jaenisch, R. (2002). Monoclonal mice generated by nu-
clear transfer from mature B and T donor cells. Nature
415
, 1035–1038.
Hockemeyer, D., and Jaenisch, R. (2010). Gene targeting in human pluripotent
cells. Cold Spring Harb. Symp. Quant. Biol.
75
, 201–209.
Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver,
R.C., Katibah, G.E., Amora, R., Boydston, E.A., Zeitler, B., et al. (2009). Effi-
cient targeting of expressed and silent genes in human ESCs and iPSCs using
zinc-finger nucleases. Nat. Biotechnol.
27
, 851–857.
Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost,
G.J., Zhang, L., Santiago, Y., Miller, J.C., et al. (2011). Genetic engineering of
human pluripotent cells using TALE nucleases. Nat. Biotechnol.
29
, 731–734.
Horn, S., Figl, A., Rachakonda, P.S., Fischer, C., Sucker, A., Gast, A., Kadel,
S., Moll, I., Nagore, E., Hemminki, K., et al. (2013). TERT promoter mutations
in familial and sporadic melanoma. Science
339
, 959–961.
Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L.F., Sontheimer, E.J.,
and Thomson, J.A. (2013). Efficient genome engineering in human pluripotent
stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA
110
, 15644–15649.
Howden, S.E., Gore, A., Li, Z., Fung, H.L., Nisler, B.S., Nie, J., Chen, G., McIn-
tosh, B.E., Gulbranson, D.R., Diol, N.R., et al. (2011). Genetic correction and
analysis of induced pluripotent stem cells from a patient with gyrate atrophy.
Proc. Natl. Acad. Sci. USA
108
, 6537–6542.
Howden, S.E., Maufort, J.P., Duffin, B.M., Elefanty, A.G., Stanley, E.G., and
Thomson, J.A. (2015). Simultaneous Reprogramming and Gene Correction
of Patient Fibroblasts. Stem Cell Reports
5
, 1109–1118.
Hrvatin, S., O’Donnell, C.W., Deng, F., Millman, J.R., Pagliuca, F.W., DiIorio,
P., Rezania, A., Gifford, D.K., and Melton, D.A. (2014). Differentiated human
stem cells resemble fetal, not adult,
b
cells. Proc. Natl. Acad. Sci. USA
111
,
3038–3043.
Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications
of CRISPR-Cas9 for genome engineering. Cell
157
, 1262–1278.
Huang, F.W., Hodis, E., Xu, M.J., Kryukov, G.V., Chin, L., and Garraway, L.A.
(2013). Highly recurrent TERT promoter mutations in human melanoma. Sci-
ence
339
, 957–959.
Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V.,
Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of
RNA-guided Cas9 nucleases. Nat. Biotechnol.
31
, 827–832.
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Kaini, P., Sander, J.D., Joung,
J.K., Peterson, R.T., and Yeh, J.R. (2013a). Heritable and precise zebrafish
genome editing using a CRISPR-Cas system. PLoS ONE
8
, e68708.
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peter-
son, R.T., Yeh, J.R., and Joung, J.K. (2013b). Efficient genome editing in zebra-
fish using a CRISPR-Cas system. Nat. Biotechnol.
31
, 227–229.
Irion, S., Luche, H., Gadue, P., Fehling, H.J., Kennedy, M., and Keller, G.
(2007). Identification and targeting of the ROSA26 locus in human embryonic
stem cells. Nat. Biotechnol.
25
, 1477–1482.
Jiang, J., Jing, Y., Cost, G.J., Chiang, J.C., Kolpa, H.J., Cotton, A.M., Carone,
D.M., Carone, B.R., Shivak, D.A., Guschin, D.Y., et al. (2013). Translating
dosage compensation to trisomy 21. Nature
500
, 296–300.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier,
E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive
bacterial immunity. Science
337
, 816–821.
Johnson, J.Z., and Hockemeyer, D. (2015). Human stem cell-based disease
modeling: prospects and challenges. Curr. Opin. Cell Biol.
37
, 84–90.
Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K.
(2009). Virus-free induction of pluripotency and subsequent excision of re-
programming factors. Nature
458
, 771–775.
Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can sup-
port full-term development of tetraploid blastocyst-complemented embryos.
Cell Stem Cell
5
, 135–138.
Kang, X., He, W., Huang, Y., Yu, Q., Chen, Y., Gao, X., Sun, X., and Fan, Y.
(2016). Introducing precise genetic modifications into human 3PN embryos
by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet., in press
April 6, 2016.
http://dx.doi.org/10.1007/s10815-016-0710-8.Killela, P.J., Reitman, Z.J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz, L.A.,
Jr., Friedman, A.H., Friedman, H., Gallia, G.L., Giovanella, B.C., et al. (2013).
TERT promoter mutations occur frequently in gliomas and a subset of tumors
derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA
110
, 6021–6026.
Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S.,
Yang, E., Cha, K.Y., Lanza, R., and Kim, K.S. (2009). Generation of human
induced pluripotent stem cells by direct delivery of reprogramming proteins.
Cell Stem Cell
4
, 472–476.
Cell Stem Cell
18
, May 5, 2016
583
Cell Stem Cell
Review