Table of Contents Table of Contents
Previous Page  23 128 Next Page
Information
Show Menu
Previous Page 23 128 Next Page
Page Background

adult stem cell properties derived from pluripotent stem cells. Stem Cell

Reports

2

, 838–852.

Fredriksson, N.J., Ny, L., Nilsson, J.A., and Larsson, E. (2014). Systematic

analysis of noncoding somatic mutations and gene expression alterations

across 14 tumor types. Nat. Genet.

46

, 1258–1263.

Frock, R.L., Hu, J., Meyers, R.M., Ho, Y.J., and Kii, E. (2015). Genome-wide

detection of DNA double-stranded breaks induced by engineered nucleases.

Nat. Biotechnol.

33

, 179–186.

Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and

Sander, J.D. (2013). High-frequency off-target mutagenesis induced by

CRISPR-Cas nucleases in human cells. Nat. Biotechnol.

31

, 822–826.

Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014).

Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.

Nat. Biotechnol.

32

, 279–284.

Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009). Effi-

cient induction of transgene-free human pluripotent stem cells using a vector

based on Sendai virus, an RNA virus that does not integrate into the host

genome. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.

85

, 348–362.

Gabriel, R., Lombardo, A., Arens, A., Miller, J.C., Genovese, P., Kaeppel, C.,

Nowrouzi, A., Bartholomae, C.C., Wang, J., Friedman, G., et al. (2011). An

unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Bio-

technol.

29

, 816–823.

Gibson, G. (2011). Rare and common variants: twenty arguments. Nat. Rev.

Genet.

13

, 135–145.

Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead,

E.H., Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al. (2014).

Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.

Cell

159

, 647–661.

Gonza´ lez, F., Zhu, Z., Shi, Z.D., Lelli, K., Verma, N., Li, Q.V., and Huangfu, D.

(2014). An iCRISPR platform for rapid, multiplexable, and inducible genome

editing in human pluripotent stem cells. Cell Stem Cell

15

, 215–226.

Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Har-

rison, M.M., Wildonger, J., and O’Connor-Giles, K.M. (2013). Genome engi-

neering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics

194

, 1029–1035.

Guenther, M.G., Frampton, G.M., Soldner, F., Hockemeyer, D., Mitalipova, M.,

Jaenisch, R., and Young, R.A. (2010). Chromatin structure and gene expres-

sion programs of human embryonic and induced pluripotent stem cells. Cell

Stem Cell

7

, 249–257.

Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai,

Y., Tang, Y., et al. (2015). CRISPR Inversion of CTCF Sites Alters Genome

Topology and Enhancer/Promoter Function. Cell

162

, 900–910.

Gurdon, J.B. (1962). The developmental capacity of nuclei taken from in-

testinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol.

10

,

622–640.

Gurdon, J. (1963). Nuclear transplantation in Amphibia and the importance of

stable nuclear changes in cellular differentiation. Q. Rev. Biol.

38

, 54–78.

Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R., Ma-

cLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., et al.

(2015). High-Resolution CRISPR Screens Reveal Fitness Genes and Geno-

type-Specific Cancer Liabilities. Cell

163

, 1515–1526.

Hochedlinger, K., and Jaenisch, R. (2002). Monoclonal mice generated by nu-

clear transfer from mature B and T donor cells. Nature

415

, 1035–1038.

Hockemeyer, D., and Jaenisch, R. (2010). Gene targeting in human pluripotent

cells. Cold Spring Harb. Symp. Quant. Biol.

75

, 201–209.

Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver,

R.C., Katibah, G.E., Amora, R., Boydston, E.A., Zeitler, B., et al. (2009). Effi-

cient targeting of expressed and silent genes in human ESCs and iPSCs using

zinc-finger nucleases. Nat. Biotechnol.

27

, 851–857.

Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost,

G.J., Zhang, L., Santiago, Y., Miller, J.C., et al. (2011). Genetic engineering of

human pluripotent cells using TALE nucleases. Nat. Biotechnol.

29

, 731–734.

Horn, S., Figl, A., Rachakonda, P.S., Fischer, C., Sucker, A., Gast, A., Kadel,

S., Moll, I., Nagore, E., Hemminki, K., et al. (2013). TERT promoter mutations

in familial and sporadic melanoma. Science

339

, 959–961.

Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L.F., Sontheimer, E.J.,

and Thomson, J.A. (2013). Efficient genome engineering in human pluripotent

stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA

110

, 15644–15649.

Howden, S.E., Gore, A., Li, Z., Fung, H.L., Nisler, B.S., Nie, J., Chen, G., McIn-

tosh, B.E., Gulbranson, D.R., Diol, N.R., et al. (2011). Genetic correction and

analysis of induced pluripotent stem cells from a patient with gyrate atrophy.

Proc. Natl. Acad. Sci. USA

108

, 6537–6542.

Howden, S.E., Maufort, J.P., Duffin, B.M., Elefanty, A.G., Stanley, E.G., and

Thomson, J.A. (2015). Simultaneous Reprogramming and Gene Correction

of Patient Fibroblasts. Stem Cell Reports

5

, 1109–1118.

Hrvatin, S., O’Donnell, C.W., Deng, F., Millman, J.R., Pagliuca, F.W., DiIorio,

P., Rezania, A., Gifford, D.K., and Melton, D.A. (2014). Differentiated human

stem cells resemble fetal, not adult,

b

cells. Proc. Natl. Acad. Sci. USA

111

,

3038–3043.

Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications

of CRISPR-Cas9 for genome engineering. Cell

157

, 1262–1278.

Huang, F.W., Hodis, E., Xu, M.J., Kryukov, G.V., Chin, L., and Garraway, L.A.

(2013). Highly recurrent TERT promoter mutations in human melanoma. Sci-

ence

339

, 957–959.

Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V.,

Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of

RNA-guided Cas9 nucleases. Nat. Biotechnol.

31

, 827–832.

Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Kaini, P., Sander, J.D., Joung,

J.K., Peterson, R.T., and Yeh, J.R. (2013a). Heritable and precise zebrafish

genome editing using a CRISPR-Cas system. PLoS ONE

8

, e68708.

Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peter-

son, R.T., Yeh, J.R., and Joung, J.K. (2013b). Efficient genome editing in zebra-

fish using a CRISPR-Cas system. Nat. Biotechnol.

31

, 227–229.

Irion, S., Luche, H., Gadue, P., Fehling, H.J., Kennedy, M., and Keller, G.

(2007). Identification and targeting of the ROSA26 locus in human embryonic

stem cells. Nat. Biotechnol.

25

, 1477–1482.

Jiang, J., Jing, Y., Cost, G.J., Chiang, J.C., Kolpa, H.J., Cotton, A.M., Carone,

D.M., Carone, B.R., Shivak, D.A., Guschin, D.Y., et al. (2013). Translating

dosage compensation to trisomy 21. Nature

500

, 296–300.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier,

E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive

bacterial immunity. Science

337

, 816–821.

Johnson, J.Z., and Hockemeyer, D. (2015). Human stem cell-based disease

modeling: prospects and challenges. Curr. Opin. Cell Biol.

37

, 84–90.

Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K.

(2009). Virus-free induction of pluripotency and subsequent excision of re-

programming factors. Nature

458

, 771–775.

Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can sup-

port full-term development of tetraploid blastocyst-complemented embryos.

Cell Stem Cell

5

, 135–138.

Kang, X., He, W., Huang, Y., Yu, Q., Chen, Y., Gao, X., Sun, X., and Fan, Y.

(2016). Introducing precise genetic modifications into human 3PN embryos

by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet., in press

April 6, 2016.

http://dx.doi.org/10.1007/s10815-016-0710-8.

Killela, P.J., Reitman, Z.J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz, L.A.,

Jr., Friedman, A.H., Friedman, H., Gallia, G.L., Giovanella, B.C., et al. (2013).

TERT promoter mutations occur frequently in gliomas and a subset of tumors

derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA

110

, 6021–6026.

Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S.,

Yang, E., Cha, K.Y., Lanza, R., and Kim, K.S. (2009). Generation of human

induced pluripotent stem cells by direct delivery of reprogramming proteins.

Cell Stem Cell

4

, 472–476.

Cell Stem Cell

18

, May 5, 2016

583

Cell Stem Cell

Review