Table of Contents Table of Contents
Previous Page  48 128 Next Page
Information
Show Menu
Previous Page 48 128 Next Page
Page Background

ACKNOWLEDGMENTS

We would like to thank Doug Black, Richard Wang, and Haibin Xi for sugges-

tions and Diana Becerra and Jane Wen for technical assistance. The following

cores were utilized: CDMD Muscle Phenotyping and Imaging Core, HTS and

Cell Repository Core, and Bioinformatics and Genomics Core (supported by

NIAMS-P30 AR057230); the UCLA Broad Stem Cell Research Center (BSCRC)

Flow Cytometry Core Resource, the UCLA Jonsson Comprehensive Cancer

Center (JCCC), and Center for AIDS Research (CFAR) Flow Cytometry Core

Facility (supported by NIH P30 CA016042, 5P30 AI028697); and the UCLA In-

tegrated Molecular Technologies Core (supported by CURE/P30 DK041301),

the UCLA Humanized Mouse Core (supported by the JCCC, BSCRC, CFAR,

and NIH/NIAID AI028697), and the UCLA GenoSeq core. This material is based

upon work supported by the National Science Foundation Graduate Research

Fellowship Program under Grant No. DGE-1144087 (C.S.Y.). Funding was pro-

vided by NIAMS of the NIH (P30 AR057230 to M.J.S., A.D.P., and A.N. and

R01AR064327 to A.D.P.), the Eli and Edythe Broad Center of Regenerative

Medicine and Stem Cell Research at UCLA (M.J.S. and A.D.P.), and a Rose

Hills Foundation Research Award (A.D.P.).

Received: September 9, 2015

Revised: December 18, 2015

Accepted: January 22, 2016

Published: February 11, 2016

REFERENCES

Arechavala-Gomeza, V., Anthony, K., Morgan, J., and Muntoni, F. (2012).

Antisense oligonucleotide-mediated exon skipping for Duchenne muscular

dystrophy: progress and challenges. Curr. Gene Ther.

12

, 152–160.

Be´ roud, C., Tuffery-Giraud, S., Matsuo, M., Hamroun, D., Humbertclaude, V.,

Monnier, N., Moizard, M.P., Voelckel, M.A., Calemard, L.M., Boisseau, P.,

et al. (2007). Multiexon skipping leading to an artificial DMD protein lacking

amino acids from exons 45 through 55 could rescue up to 63% of patients

with Duchenne muscular dystrophy. Hum. Mutat.

28

, 196–202.

Bladen, C.L., Salgado, D., Monges, S., Foncuberta, M.E., Kekou, K., Kosma,

K., Dawkins, H., Lamont, L., Roy, A.J., Chamova, T., et al. (2015). The

TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne

muscular dystrophy mutations. Hum. Mutat.

36

, 395–402.

Cacchiarelli, D., Incitti, T., Martone, J., Cesana, M., Cazzella, V., Santini, T.,

Sthandier, O., and Bozzoni, I. (2011). miR-31 modulates dystrophin expres-

sion: new implications for Duchenne muscular dystrophy therapy. EMBO

Rep.

12

, 136–141.

Carsana, A., Frisso, G., Tremolaterra, M.R., Lanzillo, R., Vitale, D.F., Santoro,

L., and Salvatore, F. (2005). Analysis of dystrophin gene deletions indicates

that the hinge III region of the protein correlates with disease severity. Ann.

Hum. Genet.

69

, 253–259.

Cradick, T.J., Qiu, P., Lee, C.M., Fine, E.J., and Bao, G. (2014). COSMID: A

web-based tool for identifying and validating CRISPR/Cas off-target sites.

Mol. Ther. Nucleic Acids

3

, e214.

Dekel-Naftali, M., Aviram-Goldring, A., Litmanovitch, T., Shamash, J., Reznik-

Wolf, H., Laevsky, I., Amit, M., Itskovitz-Eldor, J., Yung, Y., Hourvitz, A., et al.

(2012). Screening of human pluripotent stem cells using CGH and FISH reveals

low-grade mosaic aneuploidy and a recurrent amplification of chromosome

1q. Eur. J. Hum. Genet.

20

, 1248–1255.

Echigoya, Y., Aoki, Y., Miskew, B., Panesar, D., Touznik, A., Nagata, T.,

Tanihata, J., Nakamura, A., Nagaraju, K., and Yokota, T. (2015). Long-term ef-

ficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a

cocktail of vivo-morpholinos in mdx52 mice. Mol. Ther. Nucleic Acids

4

, e225.

Guan, X., Mack, D.L., Moreno, C.M., Strande, J.L., Mathieu, J., Shi, Y.,

Markert, C.D., Wang, Z., Liu, G., Lawlor, M.W., et al. (2014). Dystrophin-defi-

cient cardiomyocytes derived from human urine: new biologic reagents for

drug discovery. Stem Cell Res. (Amst.)

12

, 467–480.

Harper, S.Q., Hauser, M.A., DelloRusso, C., Duan, D., Crawford, R.W., Phelps,

S.F., Harper, H.A., Robinson, A.S., Engelhardt, J.F., Brooks, S.V., and

Chamberlain, J.S. (2002). Modular flexibility of dystrophin: implications for

gene therapy of Duchenne muscular dystrophy. Nat. Med.

8

, 253–261.

Li, H.L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T.,

Tanaka, M., Amano, N., Watanabe, A., Sakurai, H., et al. (2015). Precise

correction of the dystrophin gene in duchenne muscular dystrophy patient

induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell

Reports

4

, 143–154.

Long, C., McAnally, J.R., Shelton, J.M., Mireault, A.A., Bassel-Duby, R., and

Olson, E.N. (2014). Prevention of muscular dystrophy in mice by CRISPR/

Cas9-mediated editing of germline DNA. Science

345

, 1184–1188.

Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E.,

Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2016).

Postnatal genome editing partially restores dystrophin expression in a mouse

model of muscular dystrophy. Science

351

, 400–403.

Menke, A., and Jockusch, H. (1995). Extent of shock-induced membrane

leakage in human and mouse myotubes depends on dystrophin. J. Cell Sci.

108

, 727–733.

Nakamura, A., Yoshida, K., Fukushima, K., Ueda, H., Urasawa, N., Koyama, J.,

Yazaki, Y., Yazaki, M., Sakai, T., Haruta, S., et al. (2008). Follow-up of three pa-

tients with a large in-frame deletion of exons 45-55 in the Duchenne muscular

dystrophy (DMD) gene. J. Clin. Neurosci.

15

, 757–763.

Nelson, C.E., Hakim, C.H., Ousterout, D.G., Thakore, P.I., Moreb, E.A., Rivera,

R.M.C., Madhavan, S., Pan, X., Ran, F.A., Yan, W.X., et al. (2016). In vivo

genome editing improves muscle function in a mouse model of Duchenne

muscular dystrophy. Science

351

, 403–407.

Ousterout, D.G., Kabadi, A.M., Thakore, P.I., Majoros, W.H., Reddy, T.E., and

Gersbach, C.A. (2015). Multiplex CRISPR/Cas9-based genome editing for

correction of dystrophin mutations that cause Duchenne muscular dystrophy.

Nat. Commun.

6

, 6244.

Partridge, T. (2002). Myoblast transplantation. Neuromuscul. Disord.

12

(

Suppl

1

), S3–S6.

Pearce, J.M.S., Pennington, R.J.T., and Walton, J.N. (1964). Serum enzyme

studies in muscle disease: Part III Serum creatine kinase activity in relatives

of patients with the Duchenne type of muscular dystrophy. J. Neurol.

Neurosurg. Psychiatry

27

, 181–185.

Tabebordbar, M., Zhu, K., Cheng, J.K.W., Chew, W.L., Widrick, J.J., Yan,

W.X., Maesner, C., Wu, E.Y., Xiao, R., Ran, F.A., et al. (2016). In vivo gene edit-

ing in dystrophic mouse muscle and muscle stem cells. Science

351

, 407–411.

Taglia, A., Petillo, R., D’Ambrosio, P., Picillo, E., Torella, A., Orsini, C., Ergoli,

M., Scutifero, M., Passamano, L., Palladino, A., et al. (2015). Clinical features

of patients with dystrophinopathy sharing the 45-55 exon deletion of DMD

gene. Acta Myol.

34

, 9–13.

Wojtal, D., Kemaladewi, D.U., Malam, Z., Abdullah, S., Wong, T.W.Y., Hyatt,

E., Baghestani, Z., Pereira, S., Stavropoulos, J., Mouly, V., et al. (2016).

Spell Checking Nature: Versatility of CRISPR/Cas9 for Developing

Treatments for Inherited Disorders. Am. J. Hum. Genet.

98

, 90–101.

Xu, L., Park, K.H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., and

Han, R. (2015). CRISPR-mediated genome editing restores dystrophin expres-

sion and function in mdx mice. Mol. Ther., in press. Published online October 9,

2015.

http://dx.doi.org/10.1038/mt.2015.192.

540

Cell Stem Cell

18

, 533–540, April 7, 2016

ª

2016 Elsevier Inc.